o ROYAL
/ HOLLOWAY
P,A.."/’ff '
IgROGRA
FOR MONTE CARLORAL
IN BEAMLINES

THE JAI FESTIVAL 2020

STUART WALK_"‘-ER 1 1/12/2020

INTRODUCTION

Beam losses in particle accelerators.

= Beam Delivery Simulation and building Monte
Carlo models to study beam losses.

= Pyg4ometry: programmatic radiation transport
geometry building using Python

= Applications and future work. |

11/12/2020

MOTIVATION

= Beam losses in any beamline are unavoidable.

® Need radiation transport codes to understand beam losses:
= Minimize heating of superconducting elements.
= Minimize backgrounds in experiments.

= Optimizing shielding and dosage calculations (e.g., for a patient!).

= Typically, one will use FLUKA or Geant4 in HEP applications.

=FLUKA

= Others include MCNP, MARS and PENELOPE. Different codes, different capabilities.

= Specific applications of Geant4 to particle accelerators include BDSIM (developed at RHUL :)) and G4Beamline.

Graduate Texts in Physics

Accelerator

Physics . [N ;
& GEANTS
R e\ ol Accelerator b k.

Physics A SIMULATION TOOLKIT
Fourth Edition

W o scieunc

mmm PN l/‘
mmm LIS IV\I

Beam Delivery Simulation

11/12/2020

BEAM LOSSES

= Particles don’t just Accelerator
stop when impacting tracking here
upon material.

Radiation transport simulation here

EM shower energy deposition

secondaries
reach
detector

. : scatterin
= Will generally travel impact 9

downstream for
some distance.

o Detector
= Depositing energy

along the beamline,
some of it possibly
sensitive or cold.

beam

= Secondaries possibly
picked up in
detectors.

quadrupole quadrupole sector bend

11/12/2020 4

BEAM DELIVERY SIMULATION (BDSIM)

= Automatic Geant4 accelerator models.

= Combine particle physics of Geant4 with accelerator
tracking routines.

= Many applications to study of beam losses and
experimental backgrounds.

= Simple MAD-X-style input.

dl: drift, 1=1%m;

= Developed at RHUL over the past |5 years. ql: quadrupole, 1=1xm, k1=0.001;
cl: rcol, 1=0.6%m, xsize=5xmm, material="Cu', outerDiameter=10xcm;
sl: sbend, 1=1%m, angle=0.10;

. . 11: line = (d1, q1, di, cl, d1, s1);
BDSIM: An accelerator tracking code with

particle-matter interactions, Computer Physics

Communications, 2020. beam, particle="proton",
energy=10.0xGeV;

use,period=11;

https://doi.org/10.1016/j.cpc.2020.107200

Simple machine textual description with resulting Geant4 model
in BDSIM.

11/12/2020 5

https://doi.org/10.1016/j.cpc.2020.107200

BDSIM (CONT)

= Fully customizable geometries (both predefined component styles and
custom GDML) and fields.

= Full event-level output (ROOT) storage enabling full access to features
within the event.

" Precisely identify source of backgrounds or energy deposition, e.g. position in
phase space or loss point.

= All of Geant4’s validated physics easily applied to beamlines.

Aperture types Quadrupole yoke styles

11/12/2020

CUSTOM GEOMETRY

Generic component

N

Generic component

= Automating the building of
Monte Carlo radiation

transport geometry is one
solution.

= What about when it is not
enough!?

"

= Shielding design.

= Special components.

= Targets.

Special geometry goes here

11/12/2020

DEVELOPING BESPOKE GEOMETRY FOR GEANTA4

Implement the geometry directly in C++ or
use Geant4’s persistency format GDML.

These solutions can be cumbersome and
difficult to get right.

= Compile times and nonconforming GDML

</tessellated>
<torus name="testtorus" rmin="0.0" rmax="10.0" rtor="80.0" startphi="0.0" deltaphi="TWOPI"/>

<orb name="testorb" r="50.0"/>

<polyhedra aunit="degree" deltaphi="90." lunit="mm" name="testph" numsides="3" startphi="0." >
<zplane z=' 0" rmin="1.0" rmax="5.0"/>
<zplane z="1 0" rmin="10.0" rmax="30.0"/>

</polyhedra>

<hype name="testhype" rmin="10.0" rmax="30.0" inst="10.0" outst="20.0" z="50.0"/>

<eltube name="testeltube" dx="30.0" dy="50.0" dz="40.0"/>

<ellipsoid name="testellipsoid" ax="10" by="15" cz="20" zcut2="4" lunit="mm"/>
<elcone name='"tes e" dx="1" dy="1.5" zmax="2" zcut="1.5" lunit="mm"/>
<paraboloid name="testparaboloid" rlo="10" rhi="15" dz="20" lunit="mm"/>

" " "

<tet name="testtet" vertexl="v4" vertex2="v3" vertex3='"v1" vertex4="v2" />
<twistedbox name="ttwistedbox" PhiTwist="1" x="30" y="30" z="30" aunit="rad" lunit="mm"/>
<twistedtrd name="ttwis trd" PhiTwist="1" x1="9" x2="8" yl1="6" y2="5" z="10" aunit="rad" lun

<twistedtrap name="tt Itrap" PhiTwist="1" z="10" Theta="1" Phi="2" y1="15" y2="15" x1="10"

<twistedtubs name="ttwistedtubs" endinnerrad="10" endouterrad="15" zlen="40" phi="90." twisteda

</solids>

Declarative XML-based GDML

TestInputParameters(length, tunnelThickness, tunnelSoilThickness
tunnelSoilMaterial, tunnelFloorOffset, tunne

tunnelSolid = new G4CutTubs(name + "_tunnel_solid",
tunnell,
tunnell + tunnelThickness,
length*0.5 - lengthSafety,
9,
CLHEP: : twopi,
inputFace,
outputFace);

G4double soilInnerR = tunnell + tunnelThickness + lengthSafety;
G4double soilOuterR = soilInnerR + tunnelSoilThickness;
soilSolid = new G4CutTubs(name + " _soil solid",

soilInnerR,

soilOuterR,

length*0.5 - lengthSafety,

9,

CLHEP: : twopi,

inputFace,

outputFace);

G4double containerRadius = soilOuterR + lengthSafety;

if (tunnelFloor)

{

oo L2~ D - —_ o

Geant4 geometry in compiled C++

11/12/2020

LOADING CUSTOM GEOMETRY IN GEANT4 FROM CAD

B o [av 2y (&0 S5 B Ou-p
20 00 € B WD OB B0 S oRE &
SNCLITT ¥-1-JE T
°

= A good option is to directly
use CAD geometry in the
Monte Carlo simulation.

= However, these can often be
poorly-suited for such
simulations (bugs, overlaps,
missing materials), and require
additional preprocessing.

= Would benefit from a set of

utilities to make this easier.
Standard Geant4

Tessellated
Format (STL)

Z+

FreeCAD (above), Geant4 (bottom)

11/12/2020

RATIONALE

= Geometry preparation for Monte Carlo (MC)

simulations is difficult. \V/ﬂ« a TE%T—?IEI.%(BDYE

™

= Develop a general-purpose Python API for thOﬂ
writing, visualizing and debugging Monte Carlo pg

Radiation Transport geometry.

FreeCAD

= Read and write many different MC formats as
possible for maximum flexibility.

ANTLR

= Maximize use of extremely mature open-source
libraries in Python.

= More physicists know Python than any other

language. (N? A AR
Z T {)
oo \Siicl/ e

11/12/2020

PYTHON GEOMETRY SCRIPTING USING PYG4OMETRY

@mport pyg4ometry.gdml as gd . . .
inport pygdometry.geantd as g4 Geometry scripting using Python

import pyg4ometry.visualisation as vi

reg = g4.Registry()

Materials

wm = g4.MaterialPredefined(
bm = g4.MaterialPredefined(

wb = g4.solid.Box(,100,100,100, reg) H
b = g4.solid.Box("b",10,10,10, reg) Solids

wl = g4.LogicalVolume(wb, wm, , reg)
bl = g4.LogicalVolume(b, bm, , reg)
bpl = g4.Physicalvolume([0, 0, 0], [0, @, 0],
bl, , Wi, reg) .
bp2 = g4.PhysicalVolume([@, @, -0.25], Geometry h|erarchy

[-2+10, @, 0], h ..
b1, , wl, reg) definition

bp3 = g4.PhysicalVolume([0, @, 0.5],
[20,0,0],
b1, , wl, reg)

reg.setWorld(wl.name)

Write to GDML

w = gd.Writer()
w.addDetector(reg)
w.write(:)

Visualise (shown right)

= vi.VtkViewer()
.addLogicalVolume(wl)
.setRandomColours(); v.setOpacity(1)
.addAxes ()

.view()

< << <<

11/12/2020

FLUKA SCRIPTING

Visualization Toolkit - Cocoa #1

import pygdometry.convert as convert
import pygd4ometry.visualisation as vi
from pyg4ometry.fluka import RPP, Region, Zone, FlukaRegistry, SPH

freg = FlukaRegistry()

rppl = RPP(_Bopy1", o, 10, 0, 10, 0, 10, flukaregistry=freg)
sph = SPH(_body", [5, 5, 51, 4, flukaregistry=freg)

= Also support pure Python 0
z = Zone

FLUKA scripting. z.addIntersection(rppl)
z.addSubtraction(sph)

. region = Region(EG")
= Enables programmatic e
. . freg.addRegion(region)
manlpulatlon of FLUKA freg.assignma("COPPER", region)

geometrleS: PI’GVIOUS')’ greg = convert.fluka2Geant4(freg)
not possible.

= vi.VtkViewer()
.addAxes (length=20)

"
\'

[] Includes Conversion to v.addLoglca1V01ume(greg.getWorldVolume())
\

and from FLUKA.

.view(interactive=interactive)

11/12/2020

GEOMETRY CONVERSION

= Arbitrary transformations of in-memory
geometry enabling geometry conversions
between different formats:

= FLUKA to Geant4
= Geant4 Geant4 to FLUKA
= STL and CAD to Geant4

Vacuum chamber
designed in FLUKA
using flair before
automatic conversion
to Geant4.

= Difficult and error-prone to design a
geometry in either FLUKA or Geant4.

e e Visualization Toolkit - Cocoa #1

= If you want to try a different code, you &
must start from scratch.

" Instead with Pyg4ometry simply convert
between the two formats, saving many
hours of time, without errors.

|

Geant4 ray tracer

Pygdometry (VTK)

11/12/2020

CONVERSION: FLUKATO GDML

import pygd4ometry.fluka as fluka

import pyg4ometry.convert as conver
= KLEVER QFS Quadrupole designed in reader = fluka.Reader(inp")

FLAIR and translated to Geant4 greg = convert.fluka2Geant4(reader.flukaregistry)
’ wlv = greg.getWorldVolume()

= vi.VtkViewer()
.addLogicalVolume(wlv)
.setOpacity(1)
.setRandomColours()

FLUKA (FLAIR) Geant4

=G0 =50 —40) ~30 =50 =10 0 10 70 20 A0 50! 50
Fluka: > QFS_magnet va.flair x: 30.71643873 y: 38.83143134 z 61.31474734 Pan viewport -

11/12/2020

OVERLAP DETECTION

[XOK J Visualization Toolkit - Cocoa #1

" Errors in the geometry preparation can result in \
incorrect results at run-time in any Monte Carlo
code.

= Generally, these errors are "overlaps”.
= Must be eliminated for accurate simulation

= Extremely user-friendly overlap visualization in
Pyg4ometry offers substantial improvement over
previous solutions.

Checking overlaps for volume bbrr_pv (G40rb) ...
Wwww G4Exception-START
*k*k G4Exception : GeomVol1002
issued by : G4PVPlacement::CheckOverlaps()
Overlap with volume already placed !

Overlap is detected for volume bbrr_pv:0 (G40rb)

with bbr2_pv:0 (G40rb) volume's

local point (562.925,-491.466,564.793), overlapping by at least: 6.32957 cm " " ,
NOTE: Reached maximum fixed number -1- of overlaps reports for this volume ! Pyg4ometry over’|ap dlagnostlc (shown N
*kk This is just a warning message. skk

G4Exception-END hlghllghted volumes)

Geant4 overlap diagnostic

11/12/2020

COMPOSITION AND NOVEL WORKFLOWS

()
a) GDML
FILE

= Novel workflows enable composing a

model from many different sources with
ease.

“FLURKA.
FILE
STep
— /

STL
FILE

Visualization Toolkit - Cocoa #1

b)

Geant4d

BDSIM

GDML
FILE

G4beamline

pygé4ometry 1

(
FLUKA
FILE

——>

Fluka

Pygdometry (GDML)

I |
CAD (STEP)

-
x
+

Geant4 (GDML)

11/12/2020

CONCLUSION

= All radiation transport codes need a sense of geometry, but developing that geometry ca» k=
very difficult.

" We have developed a general-purpose Python API for Monte Carlo Radiation transport PYGIOMETRY: a Python libary for the creation o
. . . Monte Carlo radiation transport physical geometries
geometry to massively ease this this process. e

Stewart T. Boogert™*, Andrey Abramov?®, Laurence Nevay®, William
Shields®, Stuart Walker*

“John Adams Institute at Royal Holloway, Department of Physics, Royal Holloway,
Egham, TW20 0EX, Surrcy, UK

= Conversions to and from many formats.

Abstract

Creating and maintaining computer readable geometries for use in Monte
Carlo Radiation Transport (MCRT) simulations is an error-prone and time-
consuming task. Simulating a system often requires geometry from different
sources and modelling environments, including a range of MCRT codes and
computer-aided design (CAD) tools. PYG4OMETRY is a Python library that
enables users to rapidly create, manipulate, display, read and write Geometry
Description Markup Language (GDML)-based geometry used in simulations.
PYG4OMETRY provides importation of CAD files to GDML tessellated solids,
conversion of GDML geometry to FLUKA and conversely from FLUKA to
GDML. The implementation of PYG4OMETRY is explained in detail along
with small examples. The paper concludes with a complete example using
most of the PYG4OMETRY features and a discussion of extensions and future
work.

Keywords: Geant; FLUKA; GDML; CAD; STEP; Monte Carlo; Particle;
Transport; Geometry;

" Proven usefulness to the physics community as now being used in simulating many
experiments:

= FASER, LUXE,ATLAS NCB, LHC collimation, medical beamlines, and others.

= Future is bright, great deal of possibilities due to Python being the standard language for
hundreds of advanced libraries.

PROGRAM SUMMARY
Program Title: PYGAOMETRY
Licensing provisions: GPLv3
Programming language: Python, C-++
External routines/libraries: ANTLR, CGAL, FreeCAD, NumPy, OpenCascade,
SymPy, VTK

arXiv:2010.01109v1 [physics.comp-ph] 2 Oct 2020

*Corresponding author.
E-mail address: stewart.boogert @rhul.ac.uk

Preprint submitted to Computer Physics Communications October 5, 2020

arXiv:2010.01109

11/12/2020

https://arxiv.org/abs/2010.01109

