Electron cloud meeting #77, 04/12/2020 (indico)

Participants: H. Bartosik, M. Himmerlich, L. Giacomel, G. Iadarola (chairperson), S. Johannesson, L. Mether, E. Metral, N. Mounet, K. Paraschou, V. Petit, G. Rumolo, M. Taborelli, C. Zannini.

Benchmarking surface conditioning (M. Himmerlich)

Marcel presented an update on surface treatments for e-cloud mitigation:

- The two approaches pursued at CERN are coating with amorphous carbon and laser treatment (LESS).
- The laser ablation presents a significant risk of generating particles, which could trigger sudden beam losses (UFOs).
- To avoid this issue low-power treatments can be adopted. This approach shows better characteristics in terms of UFOs and impedance, but results in a significantly higher SEY. Nevertheless the surface shows faster conditioning compared to the untreated copper surface.
- A similar behavior is observed also in amorphous carbon coatings performed in the presence of cryosorbers.
- As a path for future development, it is proposed to target surfaces that show an SEY_{max} of 1.5 after the treatment, and condition to SEY_{max} smaller than 1.0 with an electron dose smaller that 5×10^{-4} C/mm²
- The proposed strategy is endorsed by the beam dynamics team, based on the fact that the lower initial SEY would facilitate the initial phases of a scrubbing run in terms of beam quality, and that the mentioned dose can be accumulated in relatively short scrubbing period.
- It is recommended to confirm that the conditioning process for the treated surface is not hindered by chemical modifications, like the formation of CuO observed in the LHC.

Application of Vlasov method to instabilities driven by e-cloud in the SPS dipoles (L. Mether)

Lotta presented a study on beam stability for the SPS, using the newly developed Vlasov method:

- As observed for the LHC with the same method, instabilities are found to be triggered by transverse mode coupling (TMCI).
- The effect of the bunch intensity was studied:
 - \circ Increasing the bunch intensity leads to lower instability thresholds;
 - Results are consistent with past PIC studies.
- The coherent tune shift below the instability threshold can be estimated with the Vlasov model:
 - A cancellation between the detuning from dipolar and quadrupolar forces occurs.

- $\circ~$ The tune shifts are very similar for the two studied bunch intensities.
- The effect of the synchrotron tune was also studied. Decreasing the synchrotron tune leads to a lower instability threshold. This is due to the synchrotron sidebands becoming closer, thus facilitating the coupling between modes.