HITRI+ and I.FAST: next Eu programs for SC heavy ion therapy machine

Lucio Rossi
Univ. of Milano - Physics dept. and INFN-LASA-Milano

HITRI+ and I.FAST Pre-start meeting of the WP8 (magnets) – Zoom platform 3 December 2020
Content

• Status of ion therapy in Europe
• SEEIST initiative
• CNAO & MedAustron driven initiative
• Roadmap
• HITRI -> HITRI+
• I-FAST
Hadrontherapy via carbon ions

• Hadrons, proton and ions, are clinically better than X-rays, because they spare surrounding tissue (Bragg peak)
• Proton therapy is expanding fast, while C-therapy is much behind
• Carbon and other ions are **much more precise and effective** than protons especially for the so-called «radioresistant tumors».
Hadrontherapy centers

- Hadrontherapy started beginning of 90’s
- 250,000 patients irradiated
 - 30,000 with carbon ions (5,000/y)
- World: ~ 100 hadron centers (160 by 2025)
 - 12 C-ions centers (Asia, especially Japan leading)
- Europe:
 - 28 hadrontherapy centers
 - 4 C-ions centers
Reducing footprint means cost reduction
Also saving electricity and infrastructure: superconductivity may play an important role
Japan: **HIMAC** at QST-NIRS
First SC Gantry in operation 2018

Cryocooled dry SC magnet

13 m
300 tons

Courtesy of T. Shirai, QST-NIRS

Rossi - HITRI+ and I.FAST WP8 -Magnets for HT - Pre-start Meeting1
Japan: HIMAC at QST-NIRS
strong push toward SC technologies

B0 = 3.5 T reducing accelerator dia. 20 → 7-10 m

Dip. Field: 2.9 → 3.5 → ~ 5 T
Ramp time: 60 → 5 → 3 s
Op. Temp.: 4-5 K → 10-20 K this requires HTS

4 December 2020
Fighting against cancer

Nuclear medicine as crucial component of future personalised cancer care

Develop advanced cancer therapy with ion beams and isotopes

Building international cooperation and scientific capacity in South East Europe

Advance European integration, reverse brain drain, connect to Europe

Two Strategic Objectives

One initiative

SEEIIST
South East European International Institute for Sustainable Technologies
Comprehensive Dimension: both Cancer Therapy and Research Center with 50% of the beam time dedicated to research – other Unique Selling Points

MULTI-DISCIPLINARY RESEARCH WITH HEAVY IONS
- Pre-clinical (medical, radiobiology)
- Clinical, including clinical trials
- Industrial research (microelectronics)
- Material research
- Ultra-high dose rates (FLASH)

BREAKTHROUGH IN TECHNOLOGY
- Multi-ion synchrotron (beyond presently used p and C-ions)
- More compact and much cheaper Superconducting synchrotron
- Superconducting gantry
- Higher beam intensity, faster extraction; Real time imaging

SCIENCE DIPLOMACY
- Declaration of Intent signed at CERN in October 2017 by 8 SEE countries
- MoC signed by 6 Prime Ministers of the SEE Region in July 2019, at the Summit of Berlin Process, Poznan
- Political support by the Swiss Government to establish SD roadmap

Cutting-edge innovative and novel research in any of these topics driven by novel technological opportunities
Complementary to all existing facilities

Will make cancer treatment with ions accessible to a large fraction of the European population and bring back Europe the lead position in this field

With the strong supporting consortium of 18 European research centers and clinics the SEE region is trying to revive its technological tradition
SEEIIST – First Green Infrastructure in line with Horizon Europe Cancer Mission
collaboration
CERN-CNAO-MedAustron-INFN
on C-ion GANTRY

• Improve the efficiency (medical effectiveness and treatment time) of the present facilities
 • CNAO (Pavia, IT)
 • MedAustron (Vienna, AT)
• Design a gantry compatible with the present layout without large civil engineering and infrastructure investment
• Leveraging the design capability and technology infrastructure of HEP community (CERN) to strengthen the medical technology in EU.
 → NIMMS program at CERN led by M. Vretenar
• TRIGGERED by GaTOROID of L. Bottura in 2019
Collaboration CERN-CNAO-MedAustron-INFN on C-ion SC GANTRY (started end 2019)

• Scope: design a SC gantry and demonstrate technology to allow its construction in 7-8 year

• Exploring two lines:
 • Light rotating gantry, weight ~ 10-20% of HIT gantry (40-! of of HIMAC-JP)
 • Based on work driven by TERA foundation in collaboration with CERN
 • Now mainly driven by NIMMS program at CERN, with TERA
 • Static toroidal gantry of new design based on a CERN patent

E. Felcini, PhD thesis (EPFL Lausanne and CERN, 2020)
Collaboration CERN-CNAO-MedAustron-INFN on C-ion SC GANTERY

Light rotating gantry

Toroidal gantry

End 2020: decision on design based on International panel assessment. GOING on right now...
Exploring all SC technologies for next generation HEP colliders for advancing in Hadrontherapy

- Nb-Ti remains the workhorse of superconductivity: first solution

- For **HiLumi LHC**, now, and **FCC-hh**, in the near future, CERN and HEP community is developing
 - **Nb$_3$Sn technologies for collider quality** magnets. Next talks (CERN and USA)!
 (Requirements for HEP colliders slightly ≠ for sweeping synchrotrons)
 - **Canted Cosine Theta dipoles** (Nb-Ti for **HiLumi LHC**, CERN and IHEP Beijing, Nb$_3$Sn for **FCC-hh**, PSI and LBNL). Self-funded initiative by Uppsala U. and Scaditronix (CERN coll.)

- For **FCC-hh** HEP is also exploring HTS coils for accelerator quality magnets:
 - in Europe via mainly the EC funded **FP7-EuCARD2** and **H2020-ARIES**
 - In USA mainly in LBNL (in the frame of accelerator R&D for next collider).
Nb-Ti CCT: p-gantry and HiLumi LHC

LBNL: CCT coil prototype for large acceptance proton gantry $\varnothing = 400$ mm: Successfully tested to 3.5 T; segmented former

HiLumi LHC: CERN has designed, built and tested a dual 3 T, 2 m long - $\varnothing = 90$ mm, straight CCT. Now IHEP Beijing producing 2x13 units
HTS for accelerator magnets: status in EU

CERN Feather_M2: flare end race track, REBCO Roebelecable, 40 mm bore

> 3 T in 2017; 1st magnet
> 4.5 T in 2019; 2nd magnet
~ 6-7 T in 2021; 3rd magnet, hopefully!

CEA HAS ASSEMBLED a cos9 dipole, 40 mm bore, with REBCO Roeble cable: test in 2021
LBNL effort on HTS accelerator magnets

Program based on CORC and CCT layout led by X. Wang & S. Prestemon

Program on use of Bi-2212 Rutherford cable with race track and CCT layout led by T. Shen and S. Prestremon

In December 2020
The EC H2020 funded program - 1

- HITRI: Prepared in May-June 2019 and submitted to EU in Nov.2019
 - Heavy Ion Therapy Research Infrastructure
 - Scope: design study mainly (if not purely) for SEEIIST
 - Magnet WP scope:
 - to produce an assessment and a design between CCT and CT for synchrotron and between CT/CCT/Toroid for gantry
 - To build two protos one in HTS

- Should have started in Summer 2020.
 - Not approved: info in February 2020, official communication March 2020): weak in medical part and use... (Physics part OK)
The EC H2020 funded program - 1

I.FAST

• Is the omnibus program following CARE, Eucard, Eucard2, ARIES to integrate accelerator R&D across EU labs: It si about 10 ME form EU, many WPs...

• Each reasearch theme has been pre-selected by a TIARA/ARIES committee
 • Proposal to the selection committee in July 2019. Programs were then defined in June-July 2019.
 • Decision in October 2019 to be submitted in March 2020 and to start in May 2021 (after ARIES end)
 • Proposals: 1) develop CCT for HT (approved); 2) to develop Toroids for HT (NOT approved)

• WP8 on Innovative Superconducting Magnets
 • Conceived as after-HITRI: fostering innovation: → exploring HTS cable and new magnet layout
 • Involve Industry in the know how build up is a key goal for the WP.
 • CCT made of: CORC®, stacked tapes? Roebel? Or Bi-2212 Rutherford cable? Other magnet layout?
 • The WP8 fosters also a panel to steer HTS for accelerator magnets in EU and the development of a HTS cable suitable for low losses - large size - fast cycling - synchrotrons (led by GSI)

• Applied in May 2020; Approved 3rd of November 2020!
The EC H2020 funded program - 1

- **HITRIplus (Hitri+)**
 - Once applied for I.FAST in March 2020 extension of 3 months of deadlines
 - Opportunity to re-apply, without too much effort a renewed HITRI program
 - Medical part improved, scope expanded not only to SEEIIST (still most prominent project in EU). Physics part, MAGNETS, same as HITRI
 - Infrastructure (not DS): 4 year long. Magnet program is still foreseen in 3 years
- **WP8 on Magnet Design**
 - overview and assessment of various conductors (LTS, HTS, various types of cables) and magnet layouts (cosφ, CCT, racetracks – split coils or flare ends – etc...).
 - Both for Synchrotrons (main dipole and extraction channel) and Gantry
 - Design construction and test of 1 demonstrator ~500 mm long (either LTS or HTS)
 - Very much CCT oriented!
- **Applied in May 2020; Approved 3rd of November 2020!**
The EU roadmap for enabling a full SC C-ion facility: synchrotron + gantry

<table>
<thead>
<tr>
<th>Project Description</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERN-CNAO-MedAustron-INFN collab. for Gantry</td>
<td></td>
</tr>
<tr>
<td>SEEIIST</td>
<td></td>
</tr>
<tr>
<td>H2020-HITRIPlus & I.FAST</td>
<td>LTS</td>
<td></td>
</tr>
<tr>
<td>HE program for R&D ??</td>
<td>HTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HTS</td>
<td></td>
</tr>
</tbody>
</table>

Conceptual study | Proto & Design | Construction | Installation & Commissioning

Disclaimer: roadmap to be reviewed with stakeholders
I think we should not wait too much to prepare the next step: a large magnet program in HE ...

4 December 2020
A few ideas (just as list...)

Curved $\cos \theta$ dipole with H-split yoke with assembly clamps - Courtesy Mikko Karppinen, CERN

Winding plate of the HTS 0.5 m wide HTS demonstrator toroid for the Ga-Torroid; courtesy E. Felcini and G. de Rijk, CERN

Solution for curved and straight CCT coils combining dipole and quadrupole in the same winding - Courtesy G. Kirby and J. van Nugteren, CERN

The challenge is not the field level, rather designing for ramping field and cryocooled magnets...
HITRI+ WP8 Magnet Design (with construction and test of a demonstrator)

<table>
<thead>
<tr>
<th>Member</th>
<th>Person-months</th>
<th>Total costs</th>
<th>EC funds</th>
<th>Institute matching funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>20</td>
<td>192,500</td>
<td>86,625</td>
<td>105,875</td>
</tr>
<tr>
<td>CERN</td>
<td>10</td>
<td>161,250</td>
<td>70,538</td>
<td>90,713</td>
</tr>
<tr>
<td>CIEMAT</td>
<td>22</td>
<td>145,000</td>
<td>65,250</td>
<td>79,750</td>
</tr>
<tr>
<td>INFN</td>
<td>32</td>
<td>357,000</td>
<td>160,650</td>
<td>196,350</td>
</tr>
<tr>
<td>PSI</td>
<td>2</td>
<td>29,750</td>
<td>13,388</td>
<td>16,363</td>
</tr>
<tr>
<td>UU</td>
<td>8</td>
<td>79,750</td>
<td>35,888</td>
<td>43,863</td>
</tr>
<tr>
<td>Wigner RCP</td>
<td>12</td>
<td>39,250</td>
<td>17,663</td>
<td>21,588</td>
</tr>
<tr>
<td>SEEIIST</td>
<td>8</td>
<td>65,625</td>
<td>15,094</td>
<td>50,531</td>
</tr>
<tr>
<td>Total</td>
<td>114</td>
<td>1,070,125</td>
<td>465,094</td>
<td>605,031</td>
</tr>
</tbody>
</table>

INFN is two units (MI-GE). Sentronis is associate to SEEIIST

INFN is the WP8 – Magnet Coordinator
CEA is the deputy coordinator
I.FAST WP8 Innovative SC Magnet. Demonstrators in Industry!!!

<table>
<thead>
<tr>
<th>Members</th>
<th>Person-months</th>
<th>EC funding</th>
<th>Institute matching funds</th>
<th>TOTAL Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA</td>
<td>10</td>
<td>42,188</td>
<td>76,705</td>
<td>118,892</td>
</tr>
<tr>
<td>CERN</td>
<td>11</td>
<td>190,153</td>
<td>345,732</td>
<td>535,884</td>
</tr>
<tr>
<td>Wigner RCP</td>
<td>24</td>
<td>24,638</td>
<td>44,795</td>
<td>69,433</td>
</tr>
<tr>
<td>INFN</td>
<td>14</td>
<td>112,613</td>
<td>204,750</td>
<td>317,363</td>
</tr>
<tr>
<td>CIEMAT</td>
<td>12</td>
<td>26,438</td>
<td>48,068</td>
<td>74,506</td>
</tr>
<tr>
<td>UU</td>
<td>5</td>
<td>31,500</td>
<td>57,273</td>
<td>88,773</td>
</tr>
<tr>
<td>PSI</td>
<td>6</td>
<td>28,688</td>
<td>52,159</td>
<td>80,847</td>
</tr>
<tr>
<td>BNG</td>
<td>10</td>
<td>64,313</td>
<td>116,932</td>
<td>181,244</td>
</tr>
<tr>
<td>Scanditronix</td>
<td>10</td>
<td>59,938</td>
<td>108,977</td>
<td>168,915</td>
</tr>
<tr>
<td>Elytt</td>
<td>15</td>
<td>59,938</td>
<td>108,977</td>
<td>168,915</td>
</tr>
<tr>
<td>Sigmaphi</td>
<td>15</td>
<td>59,938</td>
<td>108,977</td>
<td>168,915</td>
</tr>
<tr>
<td>Grand Total</td>
<td>132</td>
<td>700,340</td>
<td>1,273,345</td>
<td>1,973,685</td>
</tr>
</tbody>
</table>

INFN is the WP8 – Magnet Coordinator; CEA is the deputy Coord. The budget includes 50 kE (placed at CERN) of the ESG and workshops; it does not include the 200 kE of GSI-UT-IEE-ILK for ramped cable.