LEIR extraction kickers impedance studies

N.Biancacci, L.C.Feliciano, L.Sermeus, C.Zannini

HSC meeting 30-11-2020

Introduction

- Fast instabilities were observed in 2018 before RF capture.
- Harmful during LHC run -> lengthened the ion beam setup time!

Complete list of known occurrences:

09/11/2018: elogbook link

07/08/2018: elogbook link

13/11/2018: elogbook link

15/11/2018: elogbook link

Coherent motion

- Beam looks horizontally unstable.
- Doubles amplitude in ~20 $ms \rightarrow \tau = \frac{20}{\ln 2} \simeq 28 ms$ [~ 10k turns]
- Damper was in operation

Frequency content

- Large amplitude from 10 to 20 MHz
- HOM: $f_r \sim 17$ MHz, $Q \sim 3 4$
- Not very reproducible, frequency seen to jitter

Seek for a source...

• Given the plane of instability, relatively low HOM frequency and low Q factor, we started to investigate the LEIR extraction kickers.

ER.KFH32-34

ER.KFH31 and ER.KFH32-34 are used in LEIR to extract the beam. No CAD models available.

Pictures KFH3234 (LEAR 1981)

Pictures scanned from negative (Dec. 1981) https://cds.cern.ch/record/754592

KFH31 - KFH3234 CAD models

KFH3234

KFH31

Ferrite material

Source: https://www.ferroxcube.com/upload/media/product/file/MDS/8c11.pdf

KFH31 Eigenmodes

Wakefield simulations of kicker module do not show large transverse modes at the observed frequencies.

KFH3234 KFH3234 KFH3234 4000 Re(Zxdriv) Re(Zydriv) Re 100000 - Im 100000 Im(Zxdriv) Im(Zydriv) --- Re(Zxdet) Re(Zydet) 75000 3000 --- Im(Zxdet) Im(Zydet) Due to kickers spacing 80000 50000 2000 60000 25000 $Z_{j} [\Omega/m]$ $Z_{\chi} [\Omega/m]$ 1000 40000 -25000 20000 -50000 -1000 -75000 -100000 -2000 50 100 150 50 100 150 250 50 100 150 200 250 300 350 200 250 300 350 200 300 350 MHz MHZ MH₇ Longitudinal **Horizontal** Vertical

Kicker structure can sustain a quasi-TEM mode \rightarrow cable effect could play a role. We tried also to include the effect of the cables with available information.

Z_/ [Ω]

Kicker with circuitry

Circuit model available in Design Report. Pulse Formation Path made of parallel of saturating inductors and TL cables.

 Z_c (characteristic cables impedance): 15.7 Ω

 L_{sat} (saturating inductors): $10\mu H$ series with $R_{sat} = 10 \ m\Omega$

- l_1 (transmission cable length): ~24 m
- l_2 (termination cable length): ~2.6 m
- Z_k : kicker impedance

Kicker with circuitry

Circuit model available in Design Report. Pulse Formation Path made of parallel of saturating inductors and TL cables.

 Z_c (characteristic cables impedance): 15.7 Ω

 L_{sat} (saturating inductors): $10\mu H$ series with $R_{sat} = 10 \ m\Omega$

- l_1 (transmission cable length): ~24 m
- l_2 (termination cable length): ~2.6 m
- Z_k : kicker impedance

Kicker impedance

Simulated the kicker impedance from P1 to P2 Magnet as series impedance approximation:

 $S21 = \frac{2Z_c}{Z_k + 2Z_c}$

Inductive behavior up to ~20 MHz.

 \rightarrow RF measurements between P1/P2 would help to cross-check the model!

Transmission cables

Transmission side studied for different load (short, match, open).

Saturating inductors show large load \rightarrow dominate response of transmission side

Termination cables

Termination side studied for different load (short, match, open).

Termination side is normally matched \rightarrow no issue. Resonance with short: measurements recommended to benchmark the model

Kicker impedance with circuitry

Computed the effect of both transmission side (Z_1) and termination side (Z_2) with the approach of [1,2,3]:

• A large resonance at 20 MHz between transmission side (Z_1) and magnet is generated.

[1] G. Nassibian and F. Sacherer, Nucl. Instrum. Methods159,21 (1979)

[2] D. Davino and H. Hahn, Phys. Rev. ST Accel. Beams6,012001 (2003)

[3] C.Zannini, G.Rumolo, V.G.Vaccaro, CERN-ATS-2012-134, Particle Accelerator Conference (IPAC'12) – May20-25, 2012, N. Orleans, USA

Kicker impedance with circuitry

Computed the effect of both transmission side (Z_1) and termination side (Z_2) with the approach of [1,2,3]:

- A large resonance at 20 MHz between transmission side (Z_1) and magnet is generated.
- Largely dependent on the saturating inductance value.

- [1] G. Nassibian and F. Sacherer, Nucl. Instrum. Methods159,21 (1979)
- [2] D. Davino and H. Hahn, Phys. Rev. ST Accel. Beams6,012001 (2003)
- [3] C.Zannini, G.Rumolo, V.G.Vaccaro, CERN-ATS-2012-134, Particle Accelerator Conference(IPAC'12) May20-25, 2012, N. Orleans, USA

Kicker impedance with circuitry

Computed the effect of both transmission side (Z_1) and termination side (Z_2) with the approach of [1,2,3]:

- A large resonance at 20 MHz between transmission side (Z_1) and magnet is generated.
- Largely dependent on the saturating inductance value.
- Negative impedance unphysical \rightarrow maybe related to the magnet approximation as a simple series impedance.
- Benchmark with CST co-simulation wished/in progress.
- [1] G. Nassibian and F. Sacherer, Nucl. Instrum. Methods159,21 (1979)
- [2] D. Davino and H. Hahn, Phys. Rev. ST Accel. Beams6,012001 (2003)
- [3] C.Zannini, G.Rumolo, V.G.Vaccaro, CERN-ATS-2012-134, Particle Accelerator Conference(IPAC'12) May20-25, 2012, N. Orleans, USA

Summary and conclusions

- KFH31 and KFH3234 kickers were studied from the impedance and coupling to circuitry point of view.
- Kicker CAD module made from drawings and pictures: might present several kind of approximations.
- The kicker impedance related to core losses was computed → no strong transverse resonance observed.
- The kicker's cables effect was computed \rightarrow a resonance at 20 MHz present:
 - Some unphysical behavior of impedance may be related to the magnet approximation as a simple series impedance.

Next:

- RF measurements on kicker and cables to be discussed/planned with experts.
- CST co-simulation of kicker magnet + RF circuits.

Appendix

Original drawings

25.H9

Details on module spacing

471mm full length (235.5 half)461mm plate-to-plate (230.5 half)Module distance 7mm full module to middle12 mm plate to middle

Some references on kickers

M.Barnes "Injection and extraction magnets: kicker magnets " CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009

L.Ducimetière, "Advances of transmission line magnets", Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee.

RF networks: series impedance

$$\frac{b_2}{a_1}\Big|_{a_2=0} = \frac{U_2 - I_2 Z_0}{U_1 + I_1 Z_0}$$

$$U_2 = U_0 \frac{Z_0}{2Z_0 + Z} \qquad I_2 = -I_1 = -U_0 \frac{1}{2Z_0 + Z}$$

$$\frac{b_2}{a_1}\Big|_{a_2=0} = \frac{U_0 \frac{Z_0}{2Z_0 + Z} + U_0 \frac{Z_0}{2Z_0 + Z}}{U_0 \frac{Z + Z_0}{2Z_0 + Z} + U_0 \frac{Z_0}{2Z_0 + Z}} = \frac{2Z_0}{Z + 2Z_0}$$

$$\frac{b_1}{a_1}\Big|_{a_2=0} = \frac{U_1 - I_1 Z_0}{U_1 + I_1 Z_0}$$
$$U_1 = U_0 \frac{Z + Z_0}{2Z_0 + Z} \qquad I_1 = U_0 \frac{1}{2Z_0 + Z}$$
$$\frac{b_1}{a_1}\Big|_{a_2=0} = \frac{Z}{2Z_0 + Z}$$

https://cds.cern.ch/record/1415639/files/p67.pdf

KFH3234 front view

A simplified kicker schematic

T.Kramer, "Kickers, Septa and Protection Elements", CAS2018

https://indico.cern.ch/event/683936/contributions/2803312/attachments/1564570/2691879/Kickers_and_Septa_2018_CAS_ESI.pdf

Kicker circuit model for impedance

FIG. 2. Equivalent circuit for Z^{DUT}.

 $Z_{l} = \frac{1}{4} \frac{Z_{k}Z_{g}}{Z_{k} + Z_{g}}$ $Z_{x} = \frac{\frac{C}{\omega (H_{ap}/2)^{2}}}{Z_{l}}$

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.6.012001

