Beam Dynamics

Towards CompactLight completion and beyond

Andrea Latina for the CLIC team

CERN-LNF 2021-2023 – Nov 26, 2020

Contents

- CompactLight (XLS) overview
 - Short introduction for those who are not up to date
- Beam dynamics update
 - Status (highlight on CERN contributions)
- To-do list
 - Areas of collaboration

BASELINE

'Dual Mode Linac' - single linac, single klystron

Two-bunch train

· · ·			
Parameter	At gun exit	At L0 exit	Units
Repetition rate	0.1, 0.25, 1		kHz
Charge	75		рС
Proj. norm. emittance (RMS)	0.15 (x), 0.15 (y)		μ m rad
Energy	6	280	MeV
Rel. energy spread (RMS)	0.7	0.5	%
Bunch duration (RMS)	1.2	0.4 (w/ VB)	ps
Peak current (core)	20	60 (w/ VB)	Α

Table 3: Injector beam parameters.

 $\Delta t = n \tau_{gun}, n = 1,3,5...$ $\Delta s = n \lambda_{gun}$ Δt Δs n Gun Е 6 GHz 1 166 ps 50 mm C-Band 500 ps 150 mm З 833 ps 250 mm Linac Е 12 GHz 1.16 ns 350 mm X-Band 9 1.5 ns 450 mm TDC $\textbf{E}_{\bot\!\!\bot}$ 3GHz S-Band to FEL1 to FEL2 TDC - 2.5mm +▶ |∢+ 2 mm 3 GHz Pulse splitter

3

> 2.5 mm

[XLS Deliverable 2.2]

UPGRADE 2

XLS lattice

Linac modules integration

Linac 3 (up to 5.5 GeV)

Linacs 1-2-4 (up to 1.7 GeV)

WPs 4 and 8 at XLS 3rd annual meeting

1D start-to-end optimisation

Requirements :

- Arrival time: same as bunch length = sigma_z
- Peak current (compression factor) = 5%
- Average beam energy = 0.05%

1D optimization results :

- a >= 2 mm iris aperture radius
- β function at Ka-band <= 5 m
- The required integrated voltage ≤ 20 MV

"Track1D" optimisation LO_PhiD = 20.761 deg LO_Voltage = 203 MV Ka_PhiD = 180 deg Ka_Voltage = 11 MV BC1_R56 = -0.0091825 m L1_PhiD = 40 deg L1_Voltage = 0.7 GV BC2_R56 = -0.00425 m L2_PhiD = 16.175 deg L2_Voltage = 0.45 GV L3_PhiD = 2.6 GV L3_Voltage = 4.2 GV

Final rms bunch length = 0.9 um = 3 fs

Injector simulation

- "RF-Track" simulation code, we use it also for medical applications and will use for Inverse-Compton Scattering simulations
- Example: XLS X-band based 5.6-cell gun

Lattice performance (static imperfections)

Wakefield dominated linac

PLACET simulation of normalized projected emittances along the accelerator (average of 100 random seeds)

- Roll errors

Diagnostics

Funded by the European Union

Diagnostics definitions

The basic elements for every kind of measurement are defined.

Striplines inside the quads are our choice of trajectory monitor.

Cavity BPM will be used between undulators modules

Wakefield monitor will be presented only as a possible and future option.

ICT toroids will be used for accurate charge measurement.

TDS (Polarix) will be used for longitudinal phase space characterization.

Compact view screens will be used for envelope and emittance measurement.

Diagnostics layout

- Diagnostic optimisation (reduce the number of required components)

Bunch compressors design

- We use standard chicane for BC1 and BC2 for bunch compressors
- We would need dispersion-based beam-tilt correction in order to increase FEL perormance

XLS beam dynamics to-do list

Overall parameters optimisation:

• 1D start-to-end optimization with distribution from new injector (with WP3 – INFN LNF)

Design work:

- Re-arrangement of beamlines (i.e. linac modules) to include the longer quadrupoles
- Insertion of the diagnostic sections
 - Diagnostics optimisation to reduce cost / power consumption
- BC's design including CSR and high-order corrections
- Design of missing beam lines
 - Transfer to the undulators including kickers (Ankara)
 - Linac 4

Performance studies:

- Static and dynamic imperfection studies, using the updated design
 - Static:: detailed tolerance study, including transport to the undulators
 - Dynamic: energy, arrival time, current variation due to beam / RF jitter, 2-bunches simulations (long-range wakes)
- Second-order studies (e.g. dark currents, bunch sliced profile w/ new bba techniques, ...)

Summary

- CompactLight is nearly at 1 year from its end
 - Still a considerable amount of work to be done
 - We have expertise, but limited resources
- Not all of this work is needed for the CDR
 - We will probably need to sacrifice some studies
 - If XLS goes ahead then all studies would need to be performed
- Areas of collaboration:
 - Simulation codes: development, benchmark, and use
 - Beam dynamics studies
 - Beam performance optimisation