Beam Dynamics

Towards CompactLight completion and beyond

Andrea Latina
for the CLIC team

Contents

- CompactLight (XLS) overview
- Short introduction for those who are not up to date
- Beam dynamics update
- Status (highlight on CERN contributions)
- To-do list
- Areas of collaboration

BASELINE

'Dual Mode Linac' - single linac, single klystron

Two-bunch train

Table 3: Injector beam parameters.

Parameter	At gun exit	At L0 exit	Units
Repetition rate	$0.1,0.25,1$	kHz	
Charge	75		pC
Proj. norm. emittance (RMS)	$0.15(\mathrm{x}), 0.15(\mathrm{y})$	$\mu \mathrm{m} \mathrm{rad}$	
Energy	6	280	MeV
Rel. energy spread (RMS)	0.7	0.5	$\%$
Bunch duration (RMS)	1.2	$0.4(\mathrm{w} / \mathrm{VB})$	ps
Peak current (core)	20	$60(\mathrm{w} / \mathrm{VB})$	A

UPGRADE 2

XLS lattice

Linac modules integration

Linac 0 (up to 300 MeV)

Linac 3 (up to 5.5 GeV)

Linacs 1-2-4 (up to 1.7 GeV)

Funded by the European Union		Compact
Trajectory		
Striplines inside 25 mm diameter quads	Aperture:	mm diameter
CBPM between undulators modules		
View screens		
The modules are different in Linac 1,2 with respect to Linac 3.		
We can put 1 view screen every 4 structures in Linac1 and Linac2.		
Every 8 structures in Linac 3 (putting a drift if needed for symmetry)		
TDS		
1 after BC1, 2 before undulators and 2 after the undulators (length, resolution, power to be defined)	$\therefore \text { - }$	ompact view creen
Emittance measurements in 6 points:		ourtesy V. Lollo
1 with Solenoid scan in the gun, 5 with quadrupole scan after LH, BC1, BC2, before both undulator lines.		

1D start-to-end optimisation

Requirements :

- Arrival time: same as bunch length = sigma_z
- Peak current (compression factor) $=5 \%$
- Average beam energy $=0.05 \%$

1D optimization results :

- $a>=2 \mathrm{~mm}$ iris aperture radius
- β function at Ka-band $<=5 \mathrm{~m}$
- The required integrated voltage $\leq 20 \mathrm{MV}$

> "Track1D" optimisation
> LO_PhiD $=20.761 \mathrm{deg}$
> LO_Voltage $=203 \mathrm{MV}$
> Ka_PhiD $=180 \mathrm{deg}$
> Ka_Voltage $=11 \mathrm{MV}$
> BC1_R56 $=-0.0091825 \mathrm{~m}$
> L1_PhiD $=40 \mathrm{deg}$
> L1_Voltage $=0.7 \mathrm{GV}$
> BC2_R56 $=-0.00425 \mathrm{~m}$
> L2_PhiD $=16.175 \mathrm{deg}$
> L2_Voltage $=0.45 \mathrm{GV}$
> L3_PhiD $=2.6 \mathrm{GV}$
> L3_Voltage $=4.2 \mathrm{GV}$

Final rms bunch length $=0.9 \mathrm{um}=3 \mathrm{fs}$

Injector simulation

- "RF-Track" simulation code, we use it also for medical applications and will use for Inverse-Compton Scattering simulations
- Example: XLS X-band based 5.6-cell gun

Lattice performance (static imperfections)

Wakefield dominated linac
PLACET simulation of normalized projected emittances along the accelerator (average of 100 random seeds)

90\% of the machines achieve:
$\varepsilon_{x, 90 \%}<0.244 \mathrm{~mm} . \mathrm{mrad}$
$\varepsilon_{y, 90 \%}<0.217 \mathrm{~mm} . \mathrm{mrad}$
(if bpm resolution $=1 \mu \mathrm{~m}$
$\varepsilon_{\mathrm{x}, 90 \%}<0.215 \mathrm{~mm} . \mathrm{mrad}$
$\varepsilon_{\mathrm{y}, 90 \%}<0.182 \mathrm{~mm} . \mathrm{mrad}$)

Element misalignment considered:

- $100 \mu \mathrm{~m}$ rms all elements
- $5 \mu \mathrm{~m}$ bpm resolution

Still to be considered:

- Pitch angle errors
- Roll errors

Diagnostics

Diagnostics definitions

The basic elements for every kind of measurement are defined.
Striplines inside the quads are our choice of trajectory monitor.
Cavity BPM will be used between undulators modules
Wakefield monitor will be presented only as a possible and future option.

ICT toroids will be used for accurate charge measurement.
TDS (Polarix) will be used for longitudinal phase space characterization.

Compact view screens will be used for envelope and emittance measurement.

Diagnostics layout

- Diagnostic optimisation (reduce the number of required components)

Bunch compressors design

- We use standard chicane for $B C 1$ and $B C 2$ for bunch compressors
- We would need dispersion-based beam-tilt correction in order to increase FEL perormance

PRST- 18, 030701 (2015)

XLS beam dynamics to-do list

Overall parameters optimisation:

- 1D start-to-end optimization with distribution from new injector (with WP3 - INFN LNF)

Design work:

- Re-arrangement of beamlines (i.e. linac modules) to include the longer quadrupoles
- Insertion of the diagnostic sections
- Diagnostics optimisation to reduce cost / power consumption
- BC's design including CSR and high-order corrections
- Design of missing beam lines
- Transfer to the undulators including kickers (Ankara)
- Linac 4

Performance studies:

- Static and dynamic imperfection studies, using the updated design
- Static:: detailed tolerance study, including transport to the undulators
- Dynamic: energy, arrival time, current variation due to beam / RF jitter, 2-bunches simulations (long-range wakes)
- Second-order studies (e.g. dark currents, bunch sliced profile w/ new bba techniques, ...)

Summary

- CompactLight is nearly at 1 year from its end
- Still a considerable amount of work to be done
- We have expertise, but limited resources
- Not all of this work is needed for the CDR
- We will probably need to sacrifice some studies
- If XLS goes ahead then all studies would need to be performed
- Areas of collaboration:
- Simulation codes: development, benchmark, and use
- Beam dynamics studies
- Beam performance optimisation

