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Outline:  

1. Two sources and their origins and consequences 
2. Non existence of the VIA source 
3. How to explain numerical results that seem to qualitative agree with the VIA 

source 
4. Derivation of resonantly enhanced flavour source



2 methods: SC

Single flavour

(i! " ! " " m(z)ei#(z)) # = 0

F = "
(m2)$ 

$
+ sCP

s(m#$ )$ 

2$ 2

Assume WKB solutions, it is straight forward to derive

Can also derive from first principles in Wigner space



Eq1 = %" 1(x)G(x, y) = %" 1(x)(G0(x) + G0(x,w) & ' (w, z)G(z, y))

Eq2 = G(x, y)%" 1(y) = (G0(x) + G(x,w) & ' (w, z)G0(z, y)) %" 1(y)

lim
x( y

(Eq1 " Eq2) ' <(x, y) = f(x)S<(x, y)g*(y)

Use flavour basis 
Treat vev as perturbation

2 methods: VIA
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2 methods: VIA



Chiral source

Motivation

[m,S] + 0, [m, ! x] + 0

mL + mR ( SL + SR

Relaxation term contains a divergence allegedly removed by normal ordering 
(this was critiqued in 2108.08336, Kainulainen)

This means it is not necessarily true that

SL = " SR ( SL = SR = 0

And perhaps when the masses differ, chirality acts like flavour since

https://arxiv.org/abs/2108.08336
https://inspirehep.net/authors/1003927


Cline, Laurent 2108.04249 

https://arxiv.org/abs/2108.04249


Cirigliano, Lee, Tulin 1106.0747Cirigliano, Lee, Ramsey-Musolf 0412354



Gx = Gx
0 + Gx & ' & Gx

0

Dyson Schwinger equation

Use equations of equations of motion

%" 1Gx
0 = & ( %" 1Gx = &+ Gx & '

- Transform from  
- take the hermitian and anti hermitian parts

(x, y) ( (k, X)

First principles method



For scalars
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e" i, ({ M2 + ' ++ " ' h,G++} " ' " +G+" " G" +' +" )

2ik - ! G±. = e" i,
( [M2,S±,. ] + [ '

±. ,Gh] +
1

2 ({ ' +" ,G" +} " { ' " +,G+" } ))

, (A,B) =
1

2 ( ! A! kB " ! B! kA) Solution gives form of propagator
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How to do a vev insertion consistently: 

Take propagator that solves the constraint equation and expand

Gab
IJ = Gab

(0),IJ + Gab
(1),IJ + Gab

(2),IJ + 0

Gab
(1),IJ = !

c

cGac
(0),II(&M2)IJG

cb
(0),JJ

Gab
(2),IJ = !

cd

cdGac
0,II(&M2)IJG

cd
(0),JJ(&M2)JIG

db
(0),II



Zeroth order propogator

G>,<
0,IJ = g>,<

II ( (0),I&IJ ( (0),I =
! I

(k2 " m2
I )2 " ! 2

I /4Where

To derive self energies, assume the thermal corrections arise from equilibrium 
physics and are flavor diagonal

1 A
IJ = ! I&IJ ( 1 <,>

IJ = g<,>
II ! I&IJ

Where  is a thermal width! I



Vev expand the FULL KB equation
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How to turn this into the usual source 

First reverse the Wigner transform

({ 1 >,G<
(2)} " { 1 <,G>

(2)} ) = " m2
LRm2

RL ({ G>
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LL} " { G<
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( " 2

!
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LL(y, x)

" m2
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The part which contributes to the source has the form

g(x, y) = m2
LR(x)m2

RL(y)Where

Example: m2
LR(x) = bv1(x) + cv2(x)ei%, mRL(x) = bv1(x) + cv2(x)e" i%

Im[g(x, y) " g(y, x)] ) (x " y)sin%(v1(x)v$ 2(x) " v$ 1(x)v2(x))

We end up with exactly the VIA source!



Calculating all relevant sources

[&M2, (G>
(1) + G<

(1))] = 2m2
LRm2

RL( L( R(nL " nR)

({ 1 >,G<
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LRm2

RL( L( R(nL " nR)

Cancels exactly!

Leading order VIA source does not exist!



So what the heck is this?



How to find resonantly enhanced sources

Let’s ignore thermal corrections and write a simplified KB equation

[
k/ +

i

2
!/ " MHe" i

2 ! -! k " i! 5MAe" i
2 ! -! k

]
S< = 0

Perform a helicity decomposition

iS<
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0 " s! 3gs
3 + gs
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2]

Taking the trace with respect to  we have
1

2 { 1,s! 3! 5 " is! 3, " ! 5}



How to find resonantly enhanced sources

Define , solving the set of four equations and expanding to second 
order in gradients we find

gs
L,R = gs

0 . gs
3

But where is the resonant source?



How to find resonantly enhanced sources

Solve iteratively in powers of gradients (suppress spin indices)

gL/R,ij = g(0)
L/R,ij

+ g(1)
L/R,ij

+ g(2)
L/R,ij

+ 0

To leading order in gradients our differential equation is just

i
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Resonance comes from feed back of off diagonals onto diagonals!



How to find resonantly enhanced sources

It is straightforward to iteratively solve at each order of gradients

(! zj z
5)11 )

2ssin%m1m2

kz(m2
1 " m2

2) (2v$ 1v$ 2 + v1v$ $ 2 + v$ $ 1v2)
1

2k2
z

(1 " kz! kz
)g3,11

Where we have used &ma = v1, &mb = v2e
i%, j z

5 = " 2(g+
0 " g"

0 )



Can we find it with a vev insertion approach?

Resonant mixing source v(x)
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Need 2 equations: , just show relevant terms Tr [ ! 52 . 3 ] , andTr [ ! 3! 52 . 3 ]
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Summary 

1. Electroweak Baryogenesis is a key testable paradigm answering a 
fundamental question 

2. Theoretical confusion has existed in the literature for 3 decades! 
3. Using CTP formalism and D-S equations allows for a consistent calculation 
4. Doing so shows the usual source does not exist 
5. Need to see if new sources appear when thermal corrections appear at non-

zero gradients 
6. Need to apply to realistic models


