

Dark Matter Searches at the LHC

Ellis Kay
The University of Victoria
On behalf of the ATLAS & CMS Collaborations

The Nature of Dark Matter

> What could DM be made of?

Only observed to have gravitational interactions,

> Has mass

- ➤ Non-baryonic?
 - Weakly Interacting Massive Particle (WIMP)
 - ➤ Axion-like-particle (ALP)
 - New neutrino (e.g. Majorana)
- Perhaps a whole <u>dark sector</u> consisting of many DM particles!

Collider Searches for Dark Matter

Various methods exist for detecting DM, covering different ranges of DM mass, m

Will discuss various <u>recent</u> results from the ATLAS and CMS detectors at the LHC

Dark Matter Detection: Colliders

 \triangleright Produce DM (χ) in high energy proton collisions

- ➤ If DM only interacts through gravity... how do we detect it?
 - ➤ Momentum is conserved ∴ can infer missing momentum by measuring all detected particles

ATLAS: <u>Phys. Rev. D 103, 112006 (2021)</u> CMS: <u>JHEP 11 (2021) 153</u>

Selection

- Trigger on events with high p_T^{miss}
- \rightarrow Require an energetic jet/V(qq) & large p_{τ}^{miss} , veto events with $e/\mu/\tau/\gamma$
- DEEPAK8 (ML algo) distinguishes between large-R jets from W/Z and narrow ISR jets
- ightharpoonup Require large $\Delta \phi(p_T^{jet}, p_T^{miss})$
- Constrain backgrounds by defining 5 enriched control regions (CRs)
 - > Z \rightarrow $\ell\ell$, W \rightarrow $\ell\nu$ (ℓ =e, μ) & γ +jets
- Discriminant: p_T^{miss}

Mono-jet/V

ATLAS: <u>Phys. Rev. D 103, 112006 (2021)</u> CMS: <u>JHEP 11 (2021) 153</u>

B(H→inv) < 27.8%

'Hidden Sectors'

- > What if new physics, such as DM, exists in a hidden sector, composed of particles which don't undergo SM gauge interactions?
 - > Coupling to SM encoded in a mixing term in the Lagrangian
 - ➤ May communicate with the SM via mediators, which could be DM candidates OR provide 'portals' to them

- > Different communication channels between hidden sector & SM, suppressed couplings
 - ➤ May lead to unconventional signatures in the detectors

Model

- 2-mediator model with new U(1)' gauge symmetry
- Yields additional massive spin-1 Z', complex scalar s
- $\succ \chi$ obtains mass through Yukawa interactions with s

Selection

- Use <u>track-assisted clustering</u> to reconstruct 'TAR' jets
 - ➤ Better reconstruction of multi-prong s→V(qq)
 - Carefully preselect input tracks to avoid inclusion of the lepton
- Constrain V+jets and tt background using CRs
- Define categories to cover broad VV-pair momentum range
 - 'merged' collimated, ≥ 1 TAR jet
 - 'resolved' ≥ 2 small-R jets

Custom minimisation strategy used to approximate *s* mass - discriminant

Dark Higgs

Exclude $m_{Z'}$ up to 1.8 TeV for $150 \lesssim m_s/\text{GeV} \lesssim 250 @ 95\% \text{ CL}$

Model

- Dark sector with new SU(N), analogous to QCD
- Dark quarks form bound dark hadron states
- Unstable dark hadrons can decay to SM quarks, others traverse the detector

Selection

- ightharpoonup Require \geqslant 2 jets, moderate p_{T}^{miss} <u>aligned with a jet</u>
- ightharpoonup Low $\Delta \phi_{\min} = \min[\Delta \phi(\vec{J}_1, \vec{p}_T^{\text{miss}}), \Delta \phi(\vec{J}_2, \vec{p}_T^{\text{miss}})]$
- ightharpoonup High $R_{\rm T}=p_{\rm T}^{\rm miss}/m_{\rm T}$
- Distinguish between semi-visible & SM jets using BDT
- Discriminant: dijet transverse mass, m_T

$$m_{\rm T}^2 = \left[E_{\rm T,JJ} + E_{\rm T}^{\rm miss} \right]^2 - \left[\vec{p}_{\rm T,JJ} + \vec{p}_{\rm T}^{\rm miss} \right]^2$$

$$= m_{\rm JJ}^2 + 2p_{\rm T}^{\rm miss} \left[\sqrt{m_{\rm JJ}^2 + p_{\rm T,JJ}^2} - p_{\rm T,JJ} \cos(\phi_{\rm JJ,miss}) \right]$$

Semi-Visible Jets

ATLAS: <u>ATLAS-CONF-2022-038</u> CMS: <u>JHEP 06 (2022) 156</u>

Exclude 1.5 \leq m_{Z'} \leq 1 TeV for r_{inv} = 0.3 Exclude 0.01 \leq r_{inv} \leq 0.77 for m_{dark} = 20 GeV

Unconventional Signatures

Weak coupling to the SM leads to long-lived-particles (LLPs)

Many possible unconventional signatures

- Detecting these can come with experimental challenges
 - Custom triggers required
 - > Decays far from the primary vertex (PV), requiring special tracking
 - > Unusual shower shapes in calorimeters, unique fractions of ECal/HCal energy
 - > Need for timing information, which is not available in all subdetectors...

J. Phys. G: Nucl. Part. Phys. 47 090501 (2020)

 $\wedge \wedge \wedge \wedge \wedge$

- > Benchmark FRVZ model, with Higgs boson decaying to dark fermion pair
- \succ Low mass γ_d could be produced via cascade decays of heavier states
 - \triangleright Leptonic decays of γ_d are prominent in the low-mass range
 - > Decay to highly collimated groups of leptons, or 'lepton-jets' (LJ)
 - > A distinct LHC signature!

HLSP = Hidden Lightest Stable Particle f_d = dark fermion y_d = dark photon

- > Small mixing → long lifetime
- Prompt or displaced LJ signatures

Dark Bosons

2206.12181

ATI_DHVS_DHR_2022_007

Conclusions & Outlook

- There is a growing DM search programme at the LHC, with many interesting signatures covered by ATLAS and CMS
 - ➤ Looking at simplified & complex models
- Both experiments have started to look at more complex final states, which present experimental challenges, using our detectors in ways that they were not originally designed for
 - Novel triggering/tracking techniques
 - Use of machine learning to distinguish between objects
- Expect more analyses from the Run-2 (2015-2018) dataset, including combinations of results
- ➤ The LHC has now entered Run-3! Providing 13.6 TeV collision data with hardware & software upgrades!

Backup

The <u>Large Hadron Collider</u>

LHC Proton Beams

- >> > 50 kinds of magnets
- ➤ 1232 superconducting dipole magnets operating at -271.3°C
 - > Sextupole, octupole & decapole magnets correct the beam
- > 8 RadioFrequency (RF) cavities per beam

- ➤ Proton beam energy = 6.5 TeV
- > 1.2 x 10¹¹ protons/bunch
- > ~ 2800 bunches/beam
- > 25ns bunch spacing
 - > 40,000,000 collisions per second

The ATLAS Detector

The LHC Coordinate System

$$\eta = -\ln \tan \left(\frac{\theta}{2}\right)$$
$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

Types of LHC DM Searches

See Phys. Dark Univ. 26 (2019) 100371 & LHC DM Working Group

Dark matter is invisible to our detectors → look for associated production of <u>visible</u> (SM) particles

Generic Searches & Simpler Models

- > Simple signals e.g. a single mediator
- > Sizeable cross-sections
- > Fewer assumptions on specific model parameters

Specific Searches & More Complete Models

- ➤ More reliant on model assumptions
- > E.g. supersymmetry, UV complete models

Simplified Models - 'Mono-X'

- > The most general models involve contact interaction operators in Effective Field Theories (EFTs)
- \rightarrow These become invalid at large momentum transfer, Q^2 , which is problematic for Run-II
 - \succ Favour 'simplified' models with a mediator, introducing m_χ , $m_{
 m med}$, g_q and g_χ

- LOOK TOT THORIO-X SIGNATURES
 - \succ Select events with 'X' (jet/ γ /W/Z/t/H), veto other objects, precisely model backgrounds, check E_{τ}^{miss}
 - \rightarrow Fix g_q , g_{γ} and exclude m_{γ} , $m_{\text{med}} \rightarrow \underline{\text{CERN-LPCC-2016-001}}$
- ➤ Also look for visible decays of the mediator to complement these searches → CERN-LPCC-2017-01
 - > Re-interpret other analyses as mediator searches

Visibly Decaying Mediator Searches

- \rightarrow DM cannot be produced on-shell if $2m_{DM} > m_{med}$
 - Mediator decays back to SM
 - ➤ Need to probe visible signatures to see DM interactions off-shell
- > The LHC is a "mediator machine"!
- > Probe high masses in search of BSM mediators.
- ➤ Look for bumps on the smoothly falling di-object distribution, which is modeled by a parameterized function.
- In absence of bump, set limits for different physics scenarios.

Dilepton

ATLAS: PHYS. LETT. B 796 (2019) 68

CMS: JHEP 06 (2018) 120

Dijet

> ATLAS: <u>CERN-EP-2019-1</u>

CMS: <u>CERN-EP-2019-222</u>

Low Mass Di-jet Searches

ATLAS: <u>PHYS. LETT. B 795 (2019) 56</u>

CMS: <u>JHEP 01 (2018) 097</u>

- \triangleright Sensitivity at low (< 1 TeV) m_{ii} is limited by jet triggers
 - Data collection rates for inclusive single-jet triggers << SM multijet production rate</p>
- "Data-scouting" / "Trigger-object Level Analysis" (TLA)
 - Use reduced data format to allow high trigger rate with low bandwidth

- Introduce hard Initial-State Radiation (ISR) requirement
 - ightharpoonup Require \geq 1 high p_{τ} ISR jet in association with the qq resonance
 - Provides enough energy to satisfy trigger
 - Min p_{τ} high enough that hadroisation from qq gives a large-R jet
 - Achieve sensitivity to even lower mediator masses
 - ➤ ATLAS: 225 1100 GeV, CMS: < 100 GeV!</p>

ATLAS: <u>Phys. Rev. Lett. 126, 121802 (2021)</u> CMS: <u>EXO-20-013</u>

Model

- 2-mediator model with new U(1)' gauge symmetry
- Yields additional massive spin-1 Z', complex scalar s
- $ightharpoonup \chi$ obtains mass through Yukawa interactions with s

Selection

- Novel <u>track-assisted clustering</u> to reconstruct 'TAR' jets
 - ➤ Better reconstruction of multi-prong s→V(qq)V(qq)
- Define categories to cover broad VV-pair momentum range
 - > 'merged' collimated, ≥ 1 TAR jet
 - 'intermediate' 1 TAR jet with up to 2 small-R jets
- > Constrain V+jets backgrounds with 1μ + 2ℓ CRs
- Discriminant: s invariant mass, m_{vv}

Dark Higgs

ATLAS: <u>Phys. Rev. Lett. 126, 121802 (2021)</u> CMS: <u>EXO-20-013</u>

exclude $m_{z'}$ up to 1.8 TeV for $m_{s} = 210 \text{ GeV } @ 95\% \text{ CL}$

Heavy Flavour + DM

Model

- Two Higgs-doublet model with additional pseudo-scalar mediator (a), 2HDM+a
- tW+DM is the dominant single-top production mode

Selection

- Require events with high $p_{\tau}^{\text{miss}} \& \ge 1$ b-tagged jet
- 0/1 ℓ selections, for leptonic/hadronic W decays

- > Five dominant SM BG sources, Z+jets, W+jets, tt, ttZ, single top constrained using 6 CRs
- Discriminant: p_r^{miss}

tW_{op}

- l veto
- ≥ 4 standard jets
- 1 energetic large-R jet

tW₁₀

- 1 ℓ (e/μ)
 - $t(\rightarrow \ell \nu b)W(\rightarrow qq)$
- ≥ 2 standard jets
- 1 energetic large-R jet

 $t(\rightarrow qqb)W(\rightarrow \ell \nu)$

≥ 3 standard jets

 $W \rightarrow qq$

Heavy Flavour + DM

Invisible Higgs Decays

ATLAS: <u>JHEP 03 (2022) 041</u> CMS: Phys. Rev. D 105 (2022) 092007

Model

Most sensitive production mode, thanks to large production cross-section & distinctive topology

Selection

- Define 2 trigger strategy categories:
 - \rightarrow p_T^{miss} triggers (MTR) for ptmiss > 250 GeV
 - ightharpoonup p_T^{miss} + jet property triggers (VTR) for 160 < p_T^{miss} < 250 GeV
- Select VBF-like events
 - \triangleright 2 jets in opposite detector hemispheres ($\eta_{i1}\cdot\eta_{i2}<0$)
 - \rightarrow Large $\Delta \phi(p_{\tau}^{\text{miss}}, p_{\tau}^{\text{jet}})$
- \triangleright Veto e, μ , γ , τ _h,b-jets
- Constrain irreducible backgrounds with V+jets & γ+jets CRs
- Discriminant: m_{jj}

Invisible Higgs Decays

ATLAS: <u>JHEP 03 (2022) 041</u> CMS: <u>Phys. Rev. D 105 (2022) 092007</u>

B(H→inv) < 18%

Combined Results

ightharpoonup Vector/Axial-vector mediator, Dirac DM, $g_{\chi} = 1$, $g_q = 0.25$, $g_l = 0$

 m_{med} ~ 3.6 TeV reach from mediator searches

Combined Results

ightharpoonup Vector/Axial-vector mediator, Dirac DM, $g_{\chi} = 1$, $g_q = 0.25$, $g_l = 0$

Comparing Results to DD/ID

CERN-LPCC-2016-001

Comparisons to other experiments / channels are possible only in the context of a benchmark - need to fully specify model/parameters and be aware of any limitations
 Advised prescriptions exist for translating LHC limits (m_{DM} vs. m_{med}) to ID/DD limits.

1000

 $M_{\rm med}$ [GeV]

1500

2000

500

 $\sigma_{_{SI}}$ / $\sigma_{_{SD}}$

ID: DM annihilation cross-section

Combined Results

- > SI & SD WIMP-nucleon scattering cross-section, Dirac DM, $g_X = 1$, $g_q = 0.25$, $g_l = 0$
 - > Strong SD limits compared to DD for these couplings in this model!

Combined Results

- > SI WIMP-nucleon scattering cross-section, Dirac DM, $g_y = 1$, $g_q = 0.1$, $g_l = 0.01$
 - \rightarrow For these couplings in this model, the mono-jet search has higher sensitivity than DD at low $m_{\chi}!$

