Confronting GUTs with Proton Decay and Gravitational Waves Jessica Turner

Institute for Particle Physics Phenomenology, Durham University Based on 2005.13549, 2106.15634, 2209.00021

Jessica Turner

Institute for Particle Physics Phenomenology

2022 International Workshop on **B**aryon and Lepton Number Violation

Motivation for Grand Unified Theories

- 19 free and seemingly arbitrary Standard Model parameters
- GUT unifies SM gauge interactions into a single gauge group
- SM fermionic multiplet \implies single GUT irrep \implies reduces # parameters
- Many GUTs predict non-zero neutrino masses, dark matter candidate etc

GUT Predictions - Proton Decay

- GUTs unify leptons and quarks into common multiplets.
- GUTs spontaneously broken to SM gauge group \implies heavy gauge boson integrated out \implies baryon number violating process e.g. proton decay

$$\underbrace{\frac{\epsilon_{\alpha\beta}}{\Lambda_{1}^{2}} \left[\left(\overline{u_{R}^{c}} \gamma^{\mu} Q_{\alpha}\right) \left(\overline{d_{R}^{c}} \gamma_{\mu} L_{\beta}\right) + \left(\overline{u_{R}^{c}} \gamma^{\mu} Q_{\alpha}\right) \left(\overline{e_{R}^{c}} \gamma_{\mu} Q_{\beta}\right) \right] }_{+ \frac{\epsilon_{\alpha\beta}}{\Lambda_{2}^{2}} \left[\left(\overline{d_{R}^{c}} \gamma^{\mu} Q_{\alpha}\right) \left(\overline{u_{R}^{c}} \gamma_{\mu} L_{\beta}\right) + \left(\overline{d_{R}^{c}} \gamma^{\mu} Q_{\alpha}\right) \left(\overline{\nu_{R}^{c}} \gamma_{\mu} Q_{\beta}\right) \right] }$$

$$\underbrace{SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \text{ invariant but BN}}_{C}$$

<u>Weinberg, 1979</u>

GUT Predictions - Proton Decay

- GUTs unify leptons and quarks into common multiplets.
- GUTs spontaneously broken to SM gauge group \implies heavy gauge boson integrated out \implies baryon number violating process e.g. proton decay

$$\frac{\frac{\epsilon_{\alpha\beta}}{\Lambda_{1}^{2}} \left[\left(\overline{u_{R}^{c}} \gamma^{\mu} Q_{\alpha} \right) \left(\overline{d_{R}^{c}} \gamma_{\mu} L_{\beta} \right) + \left(\overline{u_{R}^{c}} \gamma^{\mu} Q_{\alpha} \right) \left(\overline{e_{R}^{c}} \gamma_{\mu} Q_{\beta} \right) \right]}{+ \frac{\epsilon_{\alpha\beta}}{\Lambda_{2}^{2}} \left[\left(\overline{d_{R}^{c}} \gamma^{\mu} Q_{\alpha} \right) \left(\overline{u_{R}^{c}} \gamma_{\mu} L_{\beta} \right) + \left(\overline{d_{R}^{c}} \gamma^{\mu} Q_{\alpha} \right) \left(\overline{\nu_{R}^{c}} \gamma_{\mu} Q_{\beta} \right) \right]} \\ p \left(u \right) \\ p \left(u \right) \\ \frac{1}{d} \left(u$$

<u>Weinberg, 1979</u>

olden Channel non-SUSY GUTs

World Leading Limit on Proton Decay

Neutrino experiments are large vats of proton sitting around for a long time. $\tau_{\pi^0 e^+} > 1.6 \times 10^{34} \text{ years}$ <u>SK (1610.03597)</u>

Future Limits from Neutrino Experiments

Water Cherenkov sensitive to $p \rightarrow e^+ \pi^0$ LArTPC more sensitive to $p \rightarrow K^+ \nu$

Jessica Turner

GUT Predictions - Topological Defects During SSB from $G_{GUT} \rightarrow \cdots \rightarrow G_{SM}$ topological defects may form.

 $\pi_0(G/H) \neq 0$

Institute for Particle Physics Phenomenology

Jessica Turner

Monopoles

 $\pi_1(G/H) \neq 0$

 $\pi_2(G/H) \neq 0$

cambridge cosmic

GUT Predictions - Topological Defects

Jessica Turner

During SSB from $G_{GUT} \rightarrow \cdots \rightarrow G_{SM}$ topological defects may form.

Cosmic strings

 $\pi_1(G/H) \neq 0$

During SSB from $G_{GUT} \rightarrow \cdots \rightarrow G_{SM}$ topological defects may form.

Cosmic strings induced via U(1) breaking are ubiquitously as GUT breaks to SM

Jessica Turner

Institute for Particle Physics Phenomenology

GUT Predictions - Topological Defects

Institute for Particle Physics Phenomenology

GUT Predictions - Topological Defects

 $V(\phi) = \frac{\lambda}{4} \left(|\phi|^2 - \eta^2 \right)^2$

GUT Predictions - Topological Defects

 $V(\phi) = \frac{\lambda}{\Lambda} \left(|\phi|^2 - \eta^2 \right)^2$

11

GUT Predictions - Topological Defects

 $S_{U(1)} = \int d^4x \left[\partial_\mu \phi \partial^\mu \phi^* - V \left(|\phi|^2 \right) \right]$ $V(\phi) = \frac{\lambda}{4} \left(|\phi|^2 - \eta^2 \right)^2$ **Institute for Particle Physics Phenomenology**

GUT Predictions - Topological Defects

 $S_{U(1)} = \int d^4x \left[\partial_\mu \phi \partial^\mu \phi^* - V \left(|\phi|^2 \right) \right]$

 $V(\phi) = \frac{\lambda}{\Lambda} \left(|\phi|^2 - \eta^2 \right)^2$

Kibble, & Nielsen, Ole

 $\frac{\rho_{\rm string}}{\rho_{\rm tot}} \propto G\mu \sim \left(\frac{\langle \phi \rangle}{M_{\rm pl}}\right)^2$ $\mu \equiv \text{string parameter}$

GUT Predictions - Cosmic Strings

- Inflation occurs before string formation → string network gives "scaling" solution
- Inflation occurs after string formation → string network diluted and no GW signal
- broken power law behaviour (Cui, Lewicki, Morrissey) <u>1912.08832</u>

Jessica Turner

• Inflation occurs during string formation \rightarrow partly diluted string network \rightarrow GW spectrum

$$\Lambda_{\rm cs} = 10^{14} \,{\rm GeV}$$
$$G\mu = 0.7 \times 10^{-10}$$

Institute for Particle Physics Phenomenology

14

Topological defects in non-supersymmetric SO(10)

unwanted

ects SY

Б

non-

Bu

Jessica Turner

 $G_x = G_{3221} \text{ or } G_{421}$

2005.13549 King, Pascoli, JT, Zhou use PD and GWs to examine viable non-SUSY SO(10) GUT breaking chains.

$G_r = G_{3221} \text{ or } G_{421}$

- Assume inflation at highest scale to remove unwanted defects and preserve cosmic strings
- GW & GUTs also explored by Buchmuller et al <u>1912.03695</u>

17

	CO(10)	defect	\mathcal{O}	defect	\mathcal{O}	Observ	vable
	50(10) Higgs	G_1	Higgs	$G_{\rm SM}$	string	gs?
	I1:	$\xrightarrow{\mathrm{m}}$	G_{3221}	$\xrightarrow{\mathrm{S}}$		\checkmark	
	I2:	$\begin{array}{c} 45 \\ \xrightarrow{\mathrm{m,s}} \\ 210 \end{array}$	G_{3221}^{C}	$\begin{array}{c} 126 \\ \xrightarrow{\mathrm{S,W}} \\ \xrightarrow{126} \end{array}$		X	
	I3:	$\xrightarrow{\mathrm{m}}$	G_{421}	$\xrightarrow{\mathrm{S}}$		\checkmark	
	I4:	$\begin{array}{c} {}^{45} \\ {}^{\mathrm{m}} \\ {}^{210} \end{array}$	G_{422}	$egin{array}{c} 126 \\ \stackrel{\mathrm{m}}{\longrightarrow} \\ \overline{126}.45 \end{array}$		×	
	I5:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G^{C}_{422}	$\xrightarrow[]{\text{m,w}}{126,45}$		×	
	I6:	$\xrightarrow[]{\text{m}}{\textbf{210}}$	G_{3211}	$\xrightarrow[]{\text{S}}{126}$		✓	
SO((10) $\xrightarrow{\text{defect}}_{\text{Higgs}}$	$G_3 \stackrel{\mathrm{defe}}{=}_{\mathrm{Higg}}$	$\stackrel{\mathrm{ct}}{\to} G_2$	$\stackrel{\text{defect}}{\longrightarrow} G$ $\underset{\text{Higgs}}{\text{defect}}$	defec 1 Higg	$\stackrel{\text{t}}{{\rightarrow}} G_{\text{SM}}$	Dbservable strings?
III1:	$: \xrightarrow{\mathrm{m,s}} 54$	$G_{422}^C = \frac{W}{210}$	$\rightarrow G_{422}$	$\xrightarrow{\mathrm{m}}$ G	$7421 \frac{s}{126}$	>	1
III2:	$: \qquad \xrightarrow{\mathrm{m,s}} 54$	$G_{422}^C = \frac{w}{210}$	$\rightarrow G_{422}$	$\xrightarrow{\mathrm{m}}$ G	$73221 \frac{s}{126}$	>	\checkmark
III3:	$: \qquad \xrightarrow{\mathrm{m,s}} 54$	$G_{422}^C = \frac{w}{210}$	$\rightarrow G_{422}$	m (y S		1
III4:	• =	411		$\overrightarrow{210}$ 0	73211 - 73211	≻	\checkmark
	$: \qquad \xrightarrow{\mathrm{m,s}} 54$	$G_{422}^C = \frac{m}{210}$	$\rightarrow G^C_{3221}$	$\begin{array}{c} \overrightarrow{210} \\ \overrightarrow{210} \\ \overrightarrow{W} \\ \overrightarrow{45} \end{array} \qquad G$	73211 $\overline{126}$ 73221 $\overline{\frac{s}{126}}$	→	✓ ✓
III5:	$\begin{array}{c} \xrightarrow{\mathrm{m,s}} \\ 54 \\ \vdots \\ \xrightarrow{\mathrm{m,s}} \\ 54 \end{array}$	$ \begin{array}{ccc} & 210 \\ G_{422}^{C} & \frac{m}{210} \\ G_{422}^{C} & \frac{m}{210} \end{array} $	$ \begin{array}{l} \rightarrow & G^C_{3221} \\ \rightarrow & G^C_{3221} \\ \rightarrow & G^C_{3221} \end{array} $	$\begin{array}{c} \overrightarrow{210} \\ \overrightarrow{210} \\ \overrightarrow{W} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} \end{array} \qquad G$	$\begin{array}{c} 3211 \\ \hline 126 \\ \hline 3221 \\ \hline 3221 \\ \hline 3211 \\ \hline \\ 3211 \\ \hline \\ 126 \\ \hline \end{array}$		✓ ✓ ✓
III5: III6:	$\begin{array}{c} \xrightarrow{\mathrm{m,s}} \\ 54 \\ \xrightarrow{\mathrm{m,s}} \\ 54 \\ \xrightarrow{\mathrm{m,s}} \\ 54 \\ \xrightarrow{\mathrm{54}} \end{array}$	$ \begin{array}{cccc} & & & & & \\ G_{422}^C & & & & \\ \end{array} $	$\begin{array}{c} & G^{C}_{3221} \\ \rightarrow & G^{C}_{3221} \\ \rightarrow & G^{C}_{3221} \\ \leftarrow & G_{3221} \end{array}$	$\begin{array}{c} \overrightarrow{210} \\ \overrightarrow{210} \\ \overrightarrow{W} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} \end{array} \qquad G$	$ \begin{array}{c} 3211 \\ \overline{126} \\ 3221 \\ \overline{126} \\ \end{array} $	→	✓ ✓ ✓
III5: III6: III7:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \mathbf{Z}_{422}^{\mathrm{C}} & \frac{\mathrm{m}}{210} \\ G_{422}^{C} & \frac{\mathrm{m}}{210} \\ G_{422}^{C} & \frac{\mathrm{m}}{210} \\ G_{422}^{C} & \frac{\mathrm{m},\mathrm{w}}{45} \\ G_{3221}^{C} & \frac{\mathrm{w}}{45} \end{array}$	$\begin{array}{c} \bullet \\ \bullet $	$\begin{array}{c} \overrightarrow{210} \\ \overrightarrow{W} \\ \overrightarrow{45} \\ \overrightarrow{H} \\ \overrightarrow{45} \\ \overrightarrow{H} \\ \overrightarrow{45} \\ \overrightarrow{H} \\ \overrightarrow{45} \\ \overrightarrow{H} \\ \overrightarrow{45} $ \overrightarrow{45}	$ \begin{array}{c} 3211 \\ \hline 126 \\ 3221 \\ \hline 3221 \\ \hline 3211 \\ $		✓ ✓ ✓ ✓
III5:III6:III7:III8:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \mathbf{G}_{422}^{C} & \frac{\mathbf{m}}{210} \\ G_{422}^{C} & \frac{\mathbf{m}}{210} \\ G_{422}^{C} & \frac{\mathbf{m}}{210} \\ G_{422}^{C} & \frac{\mathbf{m}, \mathbf{w}}{45} \\ G_{3221}^{C} & \frac{\mathbf{w}}{45} \\ G_{422}^{C} & \frac{\mathbf{m}}{45} \end{array}$	$\begin{array}{c} & G^{C}_{3221} \\ \rightarrow & G^{C}_{3221} \\ \rightarrow & G^{C}_{3221} \\ \rightarrow & G_{3221} \\ \rightarrow & G_{3221} \\ \rightarrow & G_{3221} \\ \rightarrow & G_{3221} \end{array}$	$\begin{array}{c} \overrightarrow{210} \\ \overrightarrow{W} \\ \overrightarrow{45} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} \\ \overrightarrow{45} \\ \overrightarrow{M} \\ \overrightarrow{45} $ \overrightarrow{45} \overrightarrow{45} \overrightarrow{45} \overrightarrow{45} 45	$ \begin{array}{c} 3211 \\ \hline 126 \\ \hline 3221 \\ \hline 3221 \\ \hline 126 \\ \hline 3211 \\ \hline 3211 \\ \hline \hline $	\Rightarrow \Rightarrow \Rightarrow	
 III5 III6 III7 III8 III8 III9 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \end{array} \end{array} \\ & & \\ & & \\ & \\$	$\begin{array}{c} & G^{C}_{3221} \\ \hline & G^{C}_{3221} \\ \hline & G^{C}_{3221} \\ \hline & G_{3221} \\ \hline & G_{421} \end{array}$	$\begin{array}{c} \overrightarrow{210} & G \\ \overrightarrow{210} & G \\ \hline \end{array} \\ \overrightarrow{45} & G \\ \hline \end{array} $	$ \begin{array}{c} 3211 \\ \hline 126 \\ 3221 \\ \hline 3221 \\ \hline 3211 \\ $	\Rightarrow \Rightarrow \Rightarrow \Rightarrow	

Jessica Turner

SO(10)IV1: IV2: IV3:

SO(10)	defect	C	defect	C	defect	C	Observable
50(10)	Higgs	G_2	Higgs	G_1	Higgs	$G_{\rm SM}$	strings?
II1:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$rac{\mathrm{m}}{45}$	G_{3221}	$\xrightarrow{\mathrm{S}}{\overline{126}}$		\checkmark
II2:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G^C_{422}	$\stackrel{ m m}{\longrightarrow}$ 210	G_{3221}^{C}	$\xrightarrow{\overline{s,w}}$		×
II3:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$ 45	G_{3221}	$\xrightarrow{\text{S}}{\overline{126}}$		\checkmark
II4:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$rac{\mathrm{w}}{45}$	G_{3221}	$\xrightarrow{s}{\overline{126}}$		✓
II5:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II6:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II7:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$\xrightarrow{\frac{m}{126}}{45}$		×
II8:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3221}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark
II9:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II10:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{422}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II11:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow{\mathrm{m,w}}210$	G_{3211}	$\frac{\xrightarrow{s}}{126}$		✓
II12:	$rac{\mathrm{m}}{45}$	G_{421}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow[]{s}{126}$		✓

$\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}}$	G_4	$\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}}$	G_3	$\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}}$	G_2	$\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}}$	G_1	$\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}}$	$G_{\rm SM}$	Observable strings?
$\xrightarrow[]{\text{m,s}}{54}$	G^{C}_{422}	$\xrightarrow[]{\text{m}}{\textbf{210}}$	G_{3221}^{C}	$rac{\mathrm{w}}{45}$	G_{3221}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow{\text{S}} \overline{126}$		 Image: A start of the start of
$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$rac{\mathrm{m}}{45}$	G_{3221}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$rac{\mathrm{m}}{45}$	G_{421}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓

]		defec		d	foot		Obcorve	hlo	Mone	nole				_								
	SO(10)	$) \frac{\text{derec}}{}$	$\stackrel{_{\mathcal{T}}}{\rightarrow} G_1$	ae	$\stackrel{\text{eiect}}{\longrightarrow} G$	SM	Observa		WOIR	pole					SO(10)	$\stackrel{\rm defect}{\longrightarrow}$	C_{-2}	$\stackrel{\rm defect}{\longrightarrow}$	C_{1}	$\stackrel{\rm defect}{\longrightarrow}$	C_{α}	Observable
		' Higg	S I	Н	iggs		strings	5?							50(10)	Higgs	02	Higgs	ΟŢ	Higgs	USM	strings?
	I1:	m	$\rightarrow G_{32}$	21 -	S										II1:	$\xrightarrow{\mathrm{m}}$	G_{422}	$\xrightarrow{\mathrm{m}}$	G_{3221}	$\xrightarrow{\mathrm{S}}$		\checkmark
		45		$\overline{1}$	26										110.	210 m,s	C^{C}	45 m	C^{C}	126 s,w		¥
	I2:	<u> </u>	$\rightarrow G^C_{32}$	21 _			×								112.	54	G ₄₂₂	210	G ₃₂₂₁	$\overline{126}$		r
	To	210 m		- 1	. 26				cosm	ic					II3:	$\xrightarrow{11,8}{54}$	G_{422}^{C}	$\xrightarrow{111,w}$	G_{3221}	$\xrightarrow{S}{\overline{100}}$		\checkmark
	13:	<u></u>	$\rightarrow G_{42}$	1 -	\rightarrow				string	js					II4∙	$\xrightarrow{\mathrm{m,s}}$	G^{C}_{aaaa}	\xrightarrow{W}	G_{2221}	$\xrightarrow{\text{S}}$		
	Τ1.	40 m		T	. 26 m		V			-						210 [′]	3221	45 ′ m	G 3221	$\overline{126}'$		•
	14.	$\overline{210}$	\rightarrow G ₄₂	$2 \overline{1}$	$\overrightarrow{26} 45$		^		Dor	nain					II5:	$\stackrel{ ext{m}}{ ext{210}}$	G_{422}	$rac{11}{45}$	G_{421}	$\frac{3}{126}$		
	15.	m,s	$\sim C^{C}$]	m,w		Y			alle					II6:	$\xrightarrow{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow{\mathrm{m}}$	G_{421}	\xrightarrow{s}		\checkmark
	10.	$\overline{54}$	7 G ₄₂	$\frac{2}{12}$	$\overline{\overline{26.45}}$				vvc						TT-7	54 m,s	CC	45 W	\overline{C}	126 m		V
	I6·	m	$\rightarrow G_{22}$	11 -	S ́		1								117:	$\overrightarrow{54}$	G_{422}°	$\overrightarrow{210}$	G_{422}	$\overrightarrow{126,45}$		~
	10.	210	/ 0.32	1 $\overline{1}$.26		•								II8:	$\xrightarrow{\mathrm{m}}$	G_{3221}	$\xrightarrow{\mathrm{m}}$	G_{3211}	$\xrightarrow{\mathrm{S}}$		\checkmark
0.0	defect	d	efect	def	fect	defect	Ob	oservable							110.	45 m,s	C^{C}	45 m,w	C_{-2214}	126 		
SO(10) $$ Higgs	G3 E	$$ G_2	Hig	$\xrightarrow{ggs} G_1$	\rightarrow Higgs	$G_{ m SM}$ s	trings?							113.	210	G ₃₂₂₁	45	G3211	$\overline{126}'$		V
III1:	$\xrightarrow{\mathrm{m,s}}$	$\overline{G^{C}_{422}}$	$\xrightarrow{\mathrm{w}} G_{42}$	$\frac{n}{22}$	$\xrightarrow{\mathrm{n}} G_{421}$	\xrightarrow{s}		 Image: A start of the start of							II10:	$rac{11}{210}$	G_{422}	$\stackrel{ ext{in}}{ ext{210}}$	G_{3211}	$\xrightarrow{5}{126}$		\checkmark
III9-	54 m,s	C^{C}	$\xrightarrow{W} C $	$\frac{4}{n}$	$\stackrel{5}{\longrightarrow} C_{2222}$	126									II11:	$\xrightarrow{\mathrm{m,s}}$	G^{C}_{422}	$\overset{\mathrm{m,w}}{\longrightarrow}$	G_{3211}	\xrightarrow{s}		\checkmark
1114	54 m s		210 U4	²² 4	5	$1 \overline{126}$		•							TT10	54 m	α	210 m	0-11	$\overline{126}_{\mathrm{S}}$		
III3:	$\begin{array}{c} \xrightarrow{11,3} \\ 54 \end{array}$	G_{422}^C	$\xrightarrow{w} G_{42}$	$22 \frac{1}{21}$	$\stackrel{\mathrm{n}}{\longrightarrow} G_{321}$	$1 \xrightarrow{3} \overline{126}$									1112:	$\overrightarrow{45}$	G_{421}	$\overrightarrow{45}$	G_{3211}	$\stackrel{\longrightarrow}{\overline{126}}$		\checkmark
III4:	$\xrightarrow{\mathrm{m,s}}$	G^{C}_{422} :	$\xrightarrow{\mathrm{m}} G_{32}^C$	$\frac{v}{221}$ - $\frac{v}{4}$	$\xrightarrow{v} G_{322}$	$1 \xrightarrow{s}{s}$		1			d of o of		d of o of		defect		d of o of		defe	- -	\cap	beorvabla
III5	$\begin{array}{c} 54\\ \mathbf{m,s}\\ \xrightarrow{\mathbf{m}}\end{array}$	C^{C}	$\xrightarrow{\mathrm{m}} C^{C}$	4 m	$\stackrel{\mathbf{b}}{\xrightarrow{,\mathrm{W}}} G_{221}$	126				SO(10)	$) \xrightarrow{\text{delect}}$	G_4	$\xrightarrow{\text{delect}}$	G_3	$\xrightarrow{\text{delect}}$	G_2	$\xrightarrow{\text{defect}}$	G_1		$\stackrel{\text{\tiny CL}}{\rightarrow} G_{\text{SI}}$	M U	
1110	54 m.s		210	²²¹ 4	5	$1 \overline{126}$		•		, , ,	Higgs	~	Higgs		Higgs		Higgs		Higg	S		strings?
III6:	$\begin{array}{c} \xrightarrow{11,3} \\ 54 \end{array}$	G_{422}^{C} -	$\xrightarrow{\mathrm{d}a,\mathrm{d}} G_{32}$	$221 \frac{1}{4}$	$\stackrel{\mathrm{n}}{\rightarrow} G_{321}$	$1 \xrightarrow[]{126}$				IV1:	$\xrightarrow{111,5}{54}$	G_{422}^{C}	$\xrightarrow{111}$ 210	G_{3221}^{C}	\xrightarrow{W}	G_{3221}	$\xrightarrow{111}$	G_{322}	$11 \frac{s}{10}$	$\frac{1}{2}$		\checkmark
III7:	$\xrightarrow{\mathrm{m,s}}$	G^{C}_{3221} .	$\xrightarrow{\mathrm{w}} G_{32}$	$\frac{n}{4}$	$\xrightarrow{\mathrm{n}} G_{321}$	$1 \xrightarrow{s}$		✓			m,s	C^{C}	ZIU W	C_{122}	40 m	C_{2224}	40 m	$C_{\alpha\alpha}$	126 S			./
III8	\xrightarrow{m}	G_{ADD} .	$\xrightarrow{\mathrm{m}} G_{2^{\prime}}$	4 n 201 —	$\stackrel{0}{\longrightarrow} G_{201}$	126 $_{1} \xrightarrow{\mathrm{S}}$					$\overline{54}$	σ_{422}	$\overrightarrow{210}$	U422	$\overline{45}$	G3221	$\overline{45}$	G32	$11 \frac{11}{126}$	7		V
	210 m,s	~ 422	45 ~ ~ ~	²∠ı 4	5 \sim 321	$\overline{126}'_{\mathrm{S}}$				IV3:	$\xrightarrow{\mathrm{m,s}}$	G_{422}^{C}	\xrightarrow{W}	G_{422}	$\xrightarrow{\mathrm{m}}$	G_{421}	$\xrightarrow{\mathrm{m}}$	G_{322}	$11 \underline{\hspace{1cm}}^{s}$	\rightarrow		\checkmark
1119:	$rac{}{54}$	G_{422}^{\cup}	$\rightarrow G_{45}$	$21 \frac{1}{4}$	\rightarrow G_{321}	$1 \xrightarrow{1} \overline{126}$		✓			54	± = =	210		45		45		126			
III1): $\xrightarrow{\mathrm{m}}_{210}$	G_{422} -	$\xrightarrow{\mathrm{m}} G_{45}$	$21 \frac{n}{4}$	$\xrightarrow{n} G_{321}$	$1 \xrightarrow{\mathrm{S}} 1 \xrightarrow{\mathrm{S}}$		✓ →														
				-	-	1 4 0																

Jessica Turner

SO(10)	defect	C	defect	C	defect	C	Observable
50(10)	Higgs	G_2	Higgs	G_1	Higgs	$G_{\rm SM}$	strings?
II1:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$rac{\mathrm{m}}{45}$	G_{3221}	$\xrightarrow{\mathrm{S}}$ $\overline{126}$		\checkmark
II2:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G^C_{422}	$\stackrel{ m m}{\longrightarrow}$ 210	G_{3221}^{C}	$\xrightarrow{\overline{s,w}}$		×
II3:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$ 45	G_{3221}	$\xrightarrow{\text{S}}{\overline{126}}$		✓
II4:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$rac{\mathrm{w}}{45}$	G_{3221}	$\xrightarrow{s}{\overline{126}}$		✓
II5:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II6:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II7:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$\xrightarrow{\frac{m}{126}}{45}$		×
II8:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3221}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark
II9:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II10:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{422}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II11:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow{\mathrm{m,w}}210$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II12:	$rac{\mathrm{m}}{45}$	G_{421}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow[]{s}{126}$		✓

ſ		defect		defect		Obsorvabla						_									
	SO(10)	$\xrightarrow{\text{defect}}$	G_1	$\xrightarrow{\text{delect}}$	$G_{ m SM}$	Observable							SO(10)	$\stackrel{\text{defect}}{\longrightarrow}$	G_{2}	$\stackrel{\rm defect}{\longrightarrow}$	G_1	$\stackrel{\rm defect}{\longrightarrow}$	Gan	Observab	le
		Higgs	Ŧ	Higgs		strings?							50(10)	Higgs	02	Higgs	ΟŢ	Higgs	USM	strings?	
	I1:	$\xrightarrow{\text{m}}$	G_{3221}	\xrightarrow{S}		\checkmark							II1:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$rac{\mathrm{m}}{45}$	G_{3221}	$\xrightarrow[]{\text{S}}{126}$		\checkmark	
	I2:	$\xrightarrow{\mathrm{m,s}}$	G^{C}_{3221}	$\xrightarrow{120}{\mathrm{s,w}}$		×							II2:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow[]{\text{m}}{\textbf{210}}$	G_{3221}^{C}	$\xrightarrow[]{\text{s,w}}{\overline{\textbf{126}}}$		×	
	TO	210 m	$\overline{0}$	$\overline{126}_{S}$									II3:	$\xrightarrow{\mathrm{m,s}}$ 54	G_{422}^{C}	$\xrightarrow{\mathrm{m,w}}$ 45	G_{3221}	$\xrightarrow{\mathrm{S}}$ $\overrightarrow{\mathrm{126}}$		\checkmark	
	13:	$\overrightarrow{45}$	G_{421}	$\stackrel{\longrightarrow}{\overline{126}}$			SO (10) Higgs					II4:	$\xrightarrow{\text{m,s}}{210}$	G_{3221}^{C}	$\xrightarrow{W}{45}$	G_{3221}	$\xrightarrow{S}{\overline{126}}$		\checkmark	
	I4:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	1264!	5	×	mult	iplets					II5:	$\stackrel{ ext{m}}{ ext{210}}$	G_{422}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{\text{S}}$ $\overrightarrow{126}$		\checkmark	
	I5:	$\xrightarrow{\mathrm{m,s}}$	G_{422}^{C}			X							II6:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$rac{\mathrm{m}}{45}$	G_{421}	$\xrightarrow{\frac{S}{126}}$		\checkmark	
	IC.	54 m	0	$\overline{126},\!$	5								II7:	$\stackrel{\mathrm{m,s}}{\longrightarrow}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$\xrightarrow{\text{m}}$ $\overrightarrow{126}$ 4^{p}	ς.	×	
	10:	$\overrightarrow{210}$	G ₃₂₁₁	$\overrightarrow{126}$		✓							II8:	$\xrightarrow{\mathrm{m}}$ 45	G_{3221}	$\xrightarrow{\mathrm{m}}$ 45	G_{3211}	$\xrightarrow{S}{\overline{126}}$,	\checkmark	
SO(10) $\stackrel{\text{defect}}{\longrightarrow}_{\text{Higgs}} C$	$G_3 \stackrel{\text{defe}}{=}_{\text{Hig}}$	$\stackrel{\mathrm{ct}}{\to} G_2$	$\stackrel{\text{defect}}{\longrightarrow} C$ Higgs	\vec{r}_1 $\frac{\text{defec}}{\text{Higg}}$	$\stackrel{\text{t}}{\stackrel{\text{s}}{\Rightarrow}} G_{\text{SM}} \stackrel{\text{Observal}}{\text{strings}}$	ole						II9:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$\stackrel{ m m,w}{ m 45}$	G_{3211}	$ \xrightarrow{\text{S}} \overline{126} $		\checkmark	
III1:	$\xrightarrow{\mathrm{m,s}}$ ($\overline{\mathcal{G}_{422}^C} \frac{\mathrm{w}}{\mathrm{210}}$	$\rightarrow G_{422}$	$\xrightarrow{\mathrm{m}}$ ($\frac{s}{421}$ $\frac{s}{122}$	>							II10:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$\stackrel{ m m}{\longrightarrow}$ 210	G_{3211}	$\stackrel{ m S}{\longrightarrow}$ 126		\checkmark	
III2:	$\begin{array}{c} \begin{array}{c} 34 \\ \mathbf{m,s} \\ 54 \end{array} \end{array} $	$\widehat{\mathcal{F}}_{422}^C = \frac{\mathbb{W}}{210}$	$\rightarrow G_{422}$	$\xrightarrow{\text{m}}$ ($73221 \frac{s}{126}$	\rightarrow							II11:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$ 210	G_{3211}	$\stackrel{\mathrm{S}}{\longrightarrow}$ 126		\checkmark	
III3:	$\begin{array}{c} \overset{\mathrm{orl}}{\longrightarrow} \\ \overline{54} \end{array} $	$\mathcal{G}_{422}^C \frac{\mathbf{w}}{210}$	$\rightarrow G_{422}$	$\frac{m}{210}$ ($73211 \frac{120}{126}$	→							II12:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{\mathrm{m}}$ 45	G_{3211}	$\stackrel{\mathrm{S}}{\longrightarrow}$ 126		\checkmark	
III4:	$\xrightarrow{\mathrm{m,s}}$ ($G_{422}^C = \frac{m}{210}$	$\rightarrow G^C_{3221}$	$\frac{\mathrm{w}}{45}$ ($73221 \frac{-5}{126}$	\rightarrow		CO(10)	defect	~	defect		defecț	~	defect		defe	ct a	0	bservable	
III5:	$\stackrel{\mathrm{m,s}}{\longrightarrow}$ ($\mathcal{G}_{422}^C \frac{\mathrm{m}}{210}$	$\rightarrow G^C_{3221}$	$\xrightarrow{\mathrm{m,w}}$ 45	$\frac{1}{7}3211 \frac{1}{126}$			SO(10)	\rightarrow Higgs	G_4	\rightarrow Higgs	G_3	Higgs	G_2	\rightarrow Higgs	G_1	Hig	$\rightarrow G_{S}$	SM	strings?	
III6:	$\xrightarrow{\mathrm{m,s}}$ C	$\mathcal{G}_{422}^C = \frac{m,v}{45}$	$\stackrel{\scriptscriptstyle{\mathrm{W}}}{\rightarrow} G_{3221}$	$\frac{\mathrm{m}}{45}$ ($\frac{1}{2}3211$ $\frac{s}{126}$	\rightarrow		IV1:	$\xrightarrow[]{\text{m,s}}{54}$	G^C_{422}	$\xrightarrow[]{\text{m}}{\textbf{210}}$	G_{3221}^{C}	$45 \rightarrow$	G_{3221}	$\begin{array}{c} \xrightarrow{\mathrm{m}} \\ 45 \end{array}$	G_{32}	$11 \frac{s}{12}$	$\rightarrow \overline{3}$		1	
III7:	$\begin{array}{c} \xrightarrow{\mathrm{m,s}} \\ 210 \\ \end{array} \qquad \qquad$	$\mathcal{G}_{3221}^C \xrightarrow{\mathrm{W}} 45$	$\rightarrow G_{3221}$	$\begin{array}{c} \xrightarrow{\mathrm{m}} & 0 \\ 45 \\ \mathbf{m} \end{array} $	$\frac{1}{2}3211$ $\frac{1}{126}$			IV2:	$\xrightarrow{\mathrm{m,s}}_{F4}$	G_{422}^{C}	\xrightarrow{W} 210	G_{422}	$\xrightarrow{\mathrm{m}}$	G_{3221}	$\xrightarrow{\text{m}}$	G_{32}	11	\rightarrow		\checkmark	
III8:	$\begin{array}{c} \stackrel{\mathrm{m}}{\longrightarrow} \\ 210 \\ \mathrm{m \ s} \end{array} $	$\begin{array}{c} \gamma \\ \mu 422 \\ 45 \\ \mu 6 \end{array}$	$\rightarrow G_{3221}$	$\begin{array}{c} \xrightarrow{\mathrm{m}} \\ 45 \\ \mathrm{m} \end{array}$	$\overrightarrow{3211} {126}$			IV3:	$\xrightarrow{\text{m,s}}$	$G^{C}_{_{A22}}$	\xrightarrow{W}	G_{422}	$\xrightarrow{\text{m}}$	G_{421}	$\xrightarrow{\text{m}}$	G_{32}	$\begin{array}{c} 120\\ \text{s}\\ 11 \end{array}$	\dot{o}		1	
III9:	$\stackrel{\mathrm{m},\mathrm{s}}{54}$ ($\mathcal{G}_{422}^{U} = \frac{11}{45}$	$\rightarrow G_{421}$	$\frac{11}{45}$ ($73211 \frac{3}{126}$	→			54	<u>'t</u> 22	210	± = 	45	± = ±	45		120	3			
III1(): $\frac{m}{210}$ ($ \widehat{J}_{422} \frac{\mathrm{m}}{45} $	$\rightarrow G_{421}$	$\frac{\mathrm{m}}{45}$ ($\frac{1}{7}3211 \frac{1}{126}$																

Jessica Turner

SO(10)	defect	C	defect	C	defect	C	Observable
50(10)	Higgs	G_2	Higgs	G_1	Higgs	$G_{\rm SM}$	strings?
II1:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$rac{\mathrm{m}}{45}$	G_{3221}	$\xrightarrow{\mathrm{S}}{\overline{126}}$		\checkmark
II2:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G^C_{422}	$\stackrel{ m m}{\longrightarrow}$ 210	G_{3221}^{C}	$\xrightarrow{\overline{s,w}}$		×
II3:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$ 45	G_{3221}	$\xrightarrow{\text{S}}{\overline{126}}$		✓
II4:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$rac{\mathrm{w}}{45}$	G_{3221}	$\xrightarrow{s}{\overline{126}}$		✓
II5:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II6:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ m m}{\longrightarrow}$ 45	G_{421}	$\xrightarrow{s}{\overline{126}}$		✓
II7:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\stackrel{ ext{W}}{ ext{210}}$	G_{422}	$\xrightarrow{\frac{m}{126}}{45}$		×
II8:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3221}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 45	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark
II9:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$ 45	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II10:	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{422}	$\stackrel{\mathrm{m}}{\longrightarrow}$ 210	G_{3211}	$\xrightarrow{s}{\overline{126}}$		✓
II11:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow[]{\text{m,w}}{\textbf{210}}$	G_{3211}	$\frac{\xrightarrow{s}}{126}$		✓
II12:	$rac{\mathrm{m}}{45}$	G_{421}	$rac{\mathrm{m}}{45}$	G_{3211}	$\xrightarrow[]{s}{126}$		✓

	CO(10)	defect	C	defect	Q	Observ	vable						Г		defect		defect		defect		Observable	٦
	SO(10)) Higgs	G_1	Higgs	$G_{\rm SM}$	strin	gs?							SO(10)	$) \xrightarrow{\text{defect}}_{\text{Higgs}}$	G_2	$\xrightarrow{\text{Higgs}}$	G_1	$\xrightarrow{\text{Higgs}}$	$G_{\rm SM}$	strings?	
	I1:	$\xrightarrow{\mathrm{m}}$	G_{3221}	\xrightarrow{s}		1								II1:	$\xrightarrow[]{\text{m}}{\textbf{210}}$	G_{422}	$\xrightarrow{\mathrm{m}}$ 45	G_{3221}	$\xrightarrow{\text{S}}$ 126		\checkmark	
	I2:	$\xrightarrow{\begin{array}{c} 45 \\ \mathbf{m,s} \\ \longrightarrow \end{array}}$	G^{C}_{2221}	$\xrightarrow{126}_{\mathrm{S,W}}$		x		If upw	anted	dofo	ct cr	roate	bd	II2:	$\xrightarrow[]{\text{m,s}}{\textbf{54}}$	G_{422}^{C}	$\xrightarrow{\mathrm{m}}$ 210	G_{3221}^{C}	$\xrightarrow{\text{S,W}} \overline{126}$		×	
	10	210 m	⊂ <u>3221</u>	$\overline{126}$						uere				II3:	$\xrightarrow{\mathrm{m,s}}$ 54	G_{422}^{C}	$\xrightarrow{\mathrm{m,w}}$	G_{3221}	$\xrightarrow{s}{100}$		\checkmark	
	13:	$rac{45}{45}$	G_{421}	$\stackrel{\sim}{\overline{126}}$				in tina	I 22R =	$ \rightarrow $	no G	i VV		II4:	$\xrightarrow{\text{m,s}}$	G_{3221}^{C}	\xrightarrow{W}	G_{3221}	\xrightarrow{s}		\checkmark	
	I4:	$\xrightarrow{\mathrm{m}}$ 210	G_{422}	$\xrightarrow{\mathrm{m}}$ $\overrightarrow{126}$ 4^{p}	5	×		else G	VV					II5:	210 $\xrightarrow{\text{m}}$ 210	G_{422}	$\xrightarrow{\begin{array}{c} 45\\ m\\ \hline 45\end{array}}$	G_{421}	$\begin{array}{c} 126 \\ \xrightarrow{\mathrm{S}} \\ \hline 126 \end{array}$		\checkmark	
	I5:	$\xrightarrow{\mathrm{m,s}}$	G_{422}^{C}	$\xrightarrow{\text{m,w}}$		×								II6:	$\xrightarrow[\mathbf{m,s}]{54}$	G_{422}^{C}	$\xrightarrow{\mathrm{m}}{45}$	G_{421}	$ \xrightarrow{\text{S}} \overline{126} $		\checkmark	
	IG.	54 m	C	126,48	5									II7:	$\xrightarrow[54]{\mathrm{m,s}}$	G_{422}^{C}	$\stackrel{ ext{w}}{\longrightarrow}$ 210	G_{422}	$\xrightarrow{\text{m}}$ $\overrightarrow{126}$ 45		×	
	10.	$\overrightarrow{210}$	G3211	$\overrightarrow{126}$		V								II8:	$\xrightarrow{\mathrm{m}}$ 45	G_{3221}	$\xrightarrow{\mathrm{m}}$ 45	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark	
SO($10) \stackrel{\text{defect}}{\longrightarrow} 0$	$G_3 \stackrel{\mathrm{def}}{\underset{\mathrm{Hig}}{-}}$	$\stackrel{\text{fect}}{\to} G_2$	$\stackrel{\text{defect}}{\longrightarrow} C$ Higgs	$ \vec{J}_1 \xrightarrow{\text{defec}}_{\text{Higgs}} $	$\stackrel{\mathrm{t}}{\simeq} G_{\mathrm{SM}}$	Observable strings?							II9:	$\xrightarrow[]{\text{m,s}}{\textbf{210}}$	G_{3221}^{C}	$\xrightarrow[]{\text{m,w}}{45}$	G_{3211}	$ \xrightarrow{\text{S}} \overline{126} $		\checkmark	
III1:	$\xrightarrow{\text{m,s}}$	$\overline{G^C_{422}}$ $\frac{\mathbf{v}}{\mathbf{v}}$	$\xrightarrow{v} G_{422}$	$\xrightarrow{\mathrm{m}}$ ($G_{421} \xrightarrow{s}$	•	<u>√</u>	_						II10:	$\stackrel{ m m}{\longrightarrow}$ 210	G_{422}	$\xrightarrow{\mathrm{m}}$ 210	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark	
III2:	$\xrightarrow{\text{m,s}}^{54}$	$G_{422}^C = \frac{v}{21}$	$\stackrel{\text{v}}{\to} G_{422}$	$\xrightarrow{\text{m}}$ ($ \begin{array}{c} 126 \\ _{3221} \xrightarrow{\mathrm{s}} \end{array} $	•	√							II11:	$\xrightarrow{\mathrm{m,s}}{54}$	G^C_{422}	$\stackrel{\mathrm{m,w}}{\longrightarrow}$	G_{3211}	$\xrightarrow{s}{\overline{126}}$		\checkmark	
III3:	$egin{array}{c} {f 54} \ {f m,s} \ {f 54} \ {f 54} \end{array}$	$G_{422}^C = rac{v}{21}$	$\stackrel{\text{lo}}{\longrightarrow} G_{422}$	$\begin{array}{c} 45 \\ \mathbf{\frac{m}{210}} \end{array} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 126\\ s\\ \end{array}\\ 3211 \end{array} \xrightarrow{s}\\ 126 \end{array} $		\checkmark							II12:	$\xrightarrow{\mathrm{m}}{45}$	G_{421}	$\xrightarrow{\mathrm{m}}$ 45	G_{3211}	$\xrightarrow[]{S}{126}$		\checkmark	
III4:	$rac{\mathrm{m,s}}{54}$ ($G_{422}^C = \frac{n}{21}$	$\stackrel{\text{a}}{\longrightarrow} G^C_{3221}$	$\frac{\mathrm{w}}{45}$ ($\widetilde{f}_{3221} \xrightarrow[]{s}{126}$	•	\checkmark			defect		defect		defect		defect		defe	ct	O	bservable	
III5:	$\xrightarrow{\mathrm{m,s}}$ ($G_{422}^C = \frac{n}{21}$	$\stackrel{\text{a}}{\longrightarrow} G^C_{3221}$	$\begin{array}{c} \xrightarrow{\mathrm{m,w}} & \mathbf{C} \\ 45 \end{array}$	$G_{3211} \xrightarrow[]{s}{126}$	•	\checkmark		SO(10)	\longrightarrow Higgs	G_4	\longrightarrow Higgs	G_3	Higgs	G_2	\longrightarrow Higgs	G_1	Higg	$\stackrel{\rightarrow}{}_{\mathrm{gs}} G_{\mathrm{SI}}$	M s	strings?	
III6:	$rac{\mathrm{m,s}}{54}$ ($G_{422}^C \frac{\mathrm{m}}{4}$	$\xrightarrow{\mathbf{w}} G_{3221}$	$\frac{\mathrm{m}}{45}$ ($\overrightarrow{J}_{3211} \xrightarrow{\mathrm{s}} \overrightarrow{\mathrm{126}}$	•	\checkmark		IV1:	$\xrightarrow{\text{m,s}} 54$	G_{422}^{C}	$\xrightarrow{\mathrm{m}}$ 210	G_{3221}^{C}	\xrightarrow{W}	G_{3221}	$\xrightarrow{\text{m}}$	G_{321}	$11 \frac{s}{100}$	\rightarrow		✓	
III7:	$\stackrel{\mathrm{m,s}}{\longrightarrow}$ ($G_{3221}^C - \frac{v}{4}$	$\xrightarrow{v} G_{3221}$	$\frac{\mathrm{m}}{45}$ ($ \widehat{J}_{3211} \xrightarrow{\mathrm{s}} \overline{126} $	•	\checkmark		IV2:	$\xrightarrow{\mathrm{m,s}}$	G_{422}^{C}	\xrightarrow{W}	G_{422}	$\xrightarrow{\mathrm{m}}$	G_{3221}	$\xrightarrow{\mathrm{m}}$	G_{321}		\rightarrow		✓	
III8:	$\frac{\mathrm{m}}{210}$ ($G_{422} = \frac{n}{4}$	$\xrightarrow{n}{5} G_{3221}$	$\frac{m}{45}$ ($ \widehat{J}_{3211} \xrightarrow{\mathrm{s}} \overline{126} $	•	\checkmark		IV3·	$\stackrel{54}{\longrightarrow}$	G^{C}_{422}	$\begin{array}{c} 210 \\ \xrightarrow{\mathrm{W}} \end{array}$	G_{499}	$\stackrel{\textbf{45}}{\longrightarrow}$	G_{491}	$\begin{array}{c} 45 \\ \mathrm{m} \\ \longrightarrow \end{array}$	G_{201}	126	6 →		<u>,</u>	
III9:	$rac{\mathrm{m,s}}{54}$ ($G_{422}^C - \frac{1}{4}$	$\xrightarrow{n}{5} G_{421}$	$\frac{\mathrm{m}}{45}$ ($ \widehat{f}_{3211} \xrightarrow{\mathrm{s}} \overline{126} $	•	\checkmark			54	₩422	$210^{'}$	₩422	45	₩421	$45^{'}$	₩ 32]	$11 \overline{126}$	<u>;</u>		▼	J
III10	$\therefore \frac{\mathrm{m}}{210} 0$	$G_{422} = \frac{n}{4}$	$\xrightarrow{n} G_{421}$	$\begin{array}{c} { m m} { m \overline{45}} \end{array} \qquad \qquad$	$ \widehat{J}_{3211} \xrightarrow{s}{126} $	•	✓															

Jessica Turner

- Assume minimal survival hypothesis
- intermediate breaking scales (due to unification).

Jessica Turner

Perform two-loop RGE analysis to determine GUT scale (proton decay rate) in terms

- Assume minimal survival hypothesis
- intermediate breaking scales (due to unification).

Jessica Turner

Perform two-loop RGE analysis to determine GUT scale (proton decay rate) in terms

- Assume minimal survival hypothesis
- intermediate breaking scales (due to unification).

Jessica Turner

Perform two-loop RGE analysis to determine GUT scale (proton decay rate) in terms

Breaking chains allowed by Super-K: IV2 & IV3

IV2 : SO (10) $\xrightarrow{M_X} G_{422}^C \xrightarrow{M_4} G_{422} \xrightarrow{M_3} G_{3221} \xrightarrow{M_2} G_{3211} \xrightarrow{M_1} G_{SM}$ IV3 : SO(10) $\xrightarrow{M_X} G_{422}^C \xrightarrow{M_4} G_{422} \xrightarrow{M_3} G_{421} \xrightarrow{M_2} G_{3211} \xrightarrow{M_1} G_{SM}$

Regions due to more free parameters

10¹⁷

- RGE constrain GUT and intermediate scale symmetry breaking.
- For type (c) chains an observable GW signal is produced in the final SSB.
- We assume Nambu-Goto string \implies gravitational radiation primary emission.
- Determine $M_1 \implies$ string tension

Jessica Turner

- non-SUSY SO(10) Pati Salam type provide unification: 31 breaking chains
- Two-loop RGE, 17 not excluded by Super-K lower bound PD.

Chain	$G\mu$ after Hyper-K (no proton decay)
I1	excluded
II1:	$G\mu \lesssim 1.5 \times 10^{-17}$
II3:	excluded
II4:	excluded
II5:	$G\mu \simeq 5.1 \times 10^{-18} - 6.3 \times 10^{-17}$
II8:	excluded
III1:	$G\mu \simeq 1.3 \times 10^{-18} - 1.6 \times 10^{-15}$
III2:	$G\mu \lesssim 5.0 \times 10^{-12}$
III3:	$G\mu \lesssim 6.2 \times 10^{-14}$
III4:	excluded Testable by LIGO ,
III6:	excluded DECIGO, AEDGE,
III7:	excluded C, ET, MAGIS.
III8:	excluded
III10:	$G\mu \lesssim 1.1 \times 10^{-21}$
IV1:	excluded
IV2:	$G\mu \lesssim 9.4 \times 10^{-13}$
IV3:	$G\mu \lesssim 9.4 \times 10^{-13}$

Summary

- If HyperK does not observe PD \implies 9 chains excluded
- 8 survivors! If we observe GW signal larger than upper bounds \implies exclude those breaking chains
- If we observe PD $\Longrightarrow M_1$ determined and so is GW signal. Correlations matters!

- non-SUSY SO(10) Pati Salam type provide unification: 31 breaking chains
- Two-loop RGE, 17 not excluded by Super-K lower bound PD.

Chain	Gu after Hyper-K (no proton decay)	
	$\frac{O\mu}{1} \frac{\operatorname{arter}(\operatorname{IIO} \operatorname{proton} \operatorname{uccay})}{1}$	
	excluded	
II1:	$G\mu \lesssim 1.5 \times 10^{-17}$	
II3:	excluded	
II4:	excluded	
II5:	$G\mu \simeq 5.1 \times 10^{-18} - 6.3 \times 10^{-17}$	
II8:	excluded	St
III1:	$G\mu \simeq 1.3 \times 10^{-18} - 1.6 \times 10^{-15}$	•••
III2:	$G\mu \lesssim 5.0 \times 10^{-12}$	
III3:	$G\mu \lesssim 6.2 \times 10^{-14}$	۱۸/
III4:	excluded	vv
III6:	excluded	an
III7:	excluded	
III8:	excluded	
III10:	$G\mu \lesssim 1.1 \times 10^{-21}$	
IV1:	excluded	
IV2:	$G\mu \lesssim 9.4 \times 10^{-13}$	
IV3:	$G\mu \lesssim 9.4 \times 10^{-13}$	

Summary

udy specific breaking chain <u>2209.00021</u>

hy? Can be excluded by Hyper-K & has associated GW signal

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- formation, leptogenesis & proton decay determined

• Fit SM fermion data to our model, perform RG running \implies scales of cosmic string

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- formation, leptogenesis & proton decay determined

• Fit SM fermion data to our model, perform RG running \implies scales of cosmic string

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- formation, leptogenesis & proton decay determined

• Fit SM fermion data to our model, perform RG running \implies scales of cosmic string

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- Fit SM fermion data to our model, perform RG running \implies scales of cosmic string formation, leptogenesis & proton decay determined

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou <u>2209.00021</u>
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- Fit SM fermion data to our model, perform RG running \implies scales of cosmic string formation, leptogenesis & proton decay determined

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- Fit SM fermion data to our model, perform RG running \implies scales of cosmic string formation, leptogenesis & proton decay determined

 $U(1)_{R-I}$ breaking cosmic string & RHN mass generation via type-I seesaw

- Specific model of chain III4: Fu, King, Marsili, Pascoli, JT, Zhou 2209.00021
- See Dror also et al <u>1908.03227</u> which connected GUT with leptogenesis
- Fit SM fermion data to our model, perform RG running \implies scales of cosmic string formation, leptogenesis & proton decay determined

 Up, down, neutrino, charged lepton Yukawa couplings and right-handed mass matrices parametrised in terms of SO(10) model parameters <u>Altarelli et al 1012.2697</u>

$$\mathcal{P}_m \in \left\{a_1, a_2, r_1, c_e, c_\nu, m_0, \eta\right\}$$

Quark & charged lepton sectors are inputs & neutrino sector is predicted:

$$\mathcal{O}_n \in \left\{\theta_{12}, \theta_{13}, \theta_{23}, \delta, \Delta m_{21}^2, \Delta m_{31}^2\right\}$$

Perform (grid based) scan of model parameters to find Yukawa & mass matrices with low

and Higgs doublet \implies thermal leptogenesis prediction

RD1	Inputs	a_1	a_2	$c_{ u}$	m_0	$(\eta_u,\eta_c,\eta_t;\eta_d,\eta_s,\eta_b)$
		63.57°	84.17°	-1.945	$82.82\mathrm{meV}$	(+,+,-;+,-,+)
	Outputs	$ heta_{13}$	$ heta_{12}$	$ heta_{23}$	δ	m_1
		8.53°	32.7°	41.9°	-125°	$3.36 \mathrm{meV}$
	$(\chi^2=0.33)$	m_{etaeta}		M_{N_1}	M_{N_2}	M_{N_3}
		$5.83\mathrm{meV}$		$4.23\cdot 10^{11}\mathrm{GeV}$	$5.32\cdot10^{11}\mathrm{GeV}$	$1.66\cdot 10^{13}{ m GeV}$

 $M_1 = 2 \times 10^{13} \text{GeV}, \quad M_2 = 5 \times 10^{13} \text{GeV} \quad M_3 = 7.55 \times 10^{13} \text{GeV}$ $M_{\rm X} = 5.68 \times 10^{15} {\rm GeV}, \quad \alpha_X = 0.0279$

$$\mathcal{L} = i\overline{N_i}\partial N_i - \tilde{Y}_{\nu}\overline{L_{\alpha}}\tilde{\Phi}N_i - \frac{1}{2}M_i\overline{N_i^c}N_i$$

 $\tilde{Y}_{\nu} = 10^{-2} \cdot \begin{pmatrix} 0.0547 + 0.9061i & 0.2923 - 0.2626i & (\\ -0.0024 + 0.04351i & -1.8277 + 0.1813i & -\\ -0.7770 - 0.2221i & 0.5467 + 2.3425i & - \end{pmatrix}$

Jessica Turner

• For each point in scan we have RHN mass scale, Yukawa coupling of RHN to leptonic

$$0.1159 - 0.1146i$$

 $-0.4079 + 1.2977i$
 $-6.8722 - 0.0676i$

Decay asymmetry from interference between tree and loop level diagrams

Covi, Roulet, Vissani

Jessica Turner

Institute for Particle Physics Phenomenology

Thermal leptogenesis

Washout and scattering processes

Jessica Turner

Thermal leptogenesis

- observables is a more powerful way of constraining GUTs.
- Coming decade is an exciting time for GUTs as neutrino and GW experiments will constrain nucleon decay, the presence of GWs and neutrinoless double beta decay $(0\nu\beta\beta)$.
- space consistent with fermionic masses and mixing \implies successful leptogenesis
- For future: study interplay of inflationary scale, more breaking chains. Grid scans for d > 3are hopeless and a more sophisticated machinery is required.

"we have entered an exciting era where new observations of GWs from the heavens and proton decay experiments from under the Earth can provide complementary windows to reveal the details of the unification of matter and forces at the highest energies."

Summary

• GUTs generically predict nucleon decay and the formation of topological defects. Interplay of these

• Studied a SO(10) breaking chain can be tested by Hyper-K, GW detectors and $0\nu\beta\beta$. Parameter

Merci!

HI

Ш

A REAL PROPERTY

I

Renormalisation Group Equations

Beta function coefficients 1 and 2-loop respectively

$$b_{i} = -\frac{11}{3}C_{2}(H_{i}) + \frac{2}{3}\sum_{F}T(F_{i}) + \frac{1}{3}\sum_{S}T(S_{i}),$$

$$b_{ij} = -\frac{34}{3}[C_{2}(H_{i})]^{2}\delta_{ij} + \sum_{F}T(F_{i})[2C_{2}(F_{j}) + \frac{10}{3}C_{2}(H_{i})\delta_{ij}] + \sum_{S}T(S_{i})[4C_{2}(S_{j}) + \frac{2}{3}C_{2}(H_{i})\delta_{ij}],$$

Two-loop RGE equation

$$\alpha_i(\mu)^{-1} = \alpha_i(\mu_0)^{-1} - \frac{b_i}{2\pi} \log \frac{\mu}{\mu_0} + \sum_j \frac{b_{ij}}{4\pi b_i} \log \left(1 - b_j \alpha_j(\mu_0) \log \frac{\mu}{\mu_0}\right) ,$$

Matching condition

$$H_i \to H_j, \quad \frac{1}{\alpha_{H_i}(M_I)} - \frac{C}{C}$$

Jessica Turner

 $\frac{C_2(H_i)}{12\pi} = \frac{1}{\alpha_{H_j}(M_I)} - \frac{C_2(H_j)}{12\pi}$

II2 : $SO(10) \xrightarrow{M_X} G_{422}^C \xrightarrow{M_2} G_{3221}^{M_1} \xrightarrow{M_1} G_{SM}$ Intersection of M_2 and M_X reduces II2 to I2 I2 : $SO(10) \xrightarrow{M_X} G_{3221}^C \xrightarrow{M_1} G_{SM}$ $M_X \equiv M_2$ At right side blue curve II2 becomes I5 I5 : $SO(10) \rightarrow G_{422}^C \rightarrow G_{SM}$ $M_2 \equiv M_1$ 10³⁸ 10³⁷ 10³⁶ Hyper-K sensitivity (b→10³⁵ (Jear) (a⁰ 10³⁴ 10³⁴ 10³³ Super-K bound 10³² II12 10³¹ 119 ★15 10³⁰ 1111 10²⁹

*M*₁ [GeV]

10¹¹

10¹²

10¹³

10¹⁴

10¹⁰

Institute for Particle Physics Phenomenology

 10^{8}

10⁹

Proton Lifetime

$$\begin{split} \epsilon^{ijk} \epsilon_{\alpha\beta} \Big(\frac{1}{\Lambda_1^2} (\overline{u_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{d_R^{ic}} \gamma_{\mu} L_{\beta}) + \frac{1}{\Lambda_1^2} (\overline{u_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{e_R^c} \gamma_{\mu} Q_{\beta}^i) \\ &+ \frac{1}{\Lambda_2^2} (\overline{d_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{u_R^{ic}} \gamma_{\mu} L_{\beta}) + \frac{1}{\Lambda_2^2} (\overline{d_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{\nu_R^c} \gamma_{\mu} Q_{\beta}^i) + \text{h.c.} \Big) \\ &\Lambda_1 = \Lambda_2 \simeq (g_X M_X) \\ \rightarrow \pi^0 + e^+) = \frac{m_p}{32\pi} \left(1 - \frac{m_{\pi^0}^2}{m_p^2} \right)^2 A_L^2 \times \left[A_{SL} \Lambda_1^{-2} (1 + |V_{ud}|^2) |\langle \pi^0 | (ud)_R u_L | p \rangle |^2 \right. \\ &+ A_{SR} (\Lambda_1^{-2} + |V_{ud}|^2 \Lambda_2^{-2}) \left| \langle \pi^0 | (ud)_L u_L | p \rangle |^2 \right] \end{split}$$

$$\begin{aligned} \epsilon^{ijk} \epsilon_{\alpha\beta} \Big(\frac{1}{\Lambda_1^2} (\overline{u_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{d_R^{ic}} \gamma_{\mu} L_{\beta}) + \frac{1}{\Lambda_1^2} (\overline{u_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{e_R^c} \gamma_{\mu} Q_{\beta}^i) \\ + \frac{1}{\Lambda_2^2} (\overline{d_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{u_R^{ic}} \gamma_{\mu} L_{\beta}) + \frac{1}{\Lambda_2^2} (\overline{d_R^{jc}} \gamma^{\mu} Q_{\alpha}^k) (\overline{\nu_R^c} \gamma_{\mu} Q_{\beta}^i) + \text{h.c.} \Big) \\ \Lambda_1 = \Lambda_2 \simeq (g_X M_X) \\ \Gamma(p \to \pi^0 + e^+) = \frac{m_p}{32\pi} \left(1 - \frac{m_{\pi^0}^2}{m_p^2} \right)^2 A_L^2 \times \left[A_{SL} \Lambda_1^{-2} (1 + |V_{ud}|^2) |\langle \pi^0 | (ud)_R u_L | p \rangle |^2 \\ + A_{SR} (\Lambda_1^{-2} + |V_{ud}|^2 \Lambda_2^{-2}) \left| \langle \pi^0 | (ud)_L u_L | p \rangle |^2 \right] \end{aligned}$$

$$A_{SL(R)} = \prod_{A \in A} M_X = \prod_{i} M_{i}$$

Jessica Turner

$$\left[\frac{\alpha_i(M_{A+1})}{\alpha_i(M_A)}\right]^{\frac{\gamma_{iL(R)}}{b_i}}$$

Gravitational Wave Calculation

$$l(t) = l_i - \Gamma G \mu \left(t - t_i \right)$$

Frequencies of GW released from the loops are given by $2k/l_i$ where $k = 1, 2, \cdots$ Loops are found to emit energy in the form of gravitational radiation at a constant rate

$$\frac{dE}{dt} = -\Gamma G \mu^2 \qquad \Gamma \sim 50$$

Assuming the fraction of the energy transfer in the form of large loops is $F_{lpha} \sim 0.1$

$$\Omega_{\rm GW}(f) = \sum_{k} \Omega_{\rm GW}^{(k)}(f) = \frac{1}{\rho_c} \frac{2k}{f} \frac{\mathcal{F}_{\alpha} \Gamma^{(k)} G \mu^2}{\alpha (\alpha + \Gamma G \mu)}$$
$$= \int_{t_F}^{t_0} dt \frac{C_{\rm eff}\left(t_i^{(k)}\right)}{t_i^{(k)4}} \frac{a^2(t) a^3\left(t_i^{(k)}\right)}{a^5(t_0)} \theta\left(t_i^{(k)} - t_F\right)$$

Jessica Turner

 $l_i = \alpha t_i$ with $\alpha \simeq 0.1$

$$rac{\mu^2}{\mu)}$$

$$C_{\rm eff} = 5.7, 0.5$$

<u>1101.5173</u> <u>1808.08968</u> <u>0003298</u>

In the Yukawa sector, couplings above the GUT scale are given by $Y_{10}^* \mathbf{16} \cdot \mathbf{16} \cdot \mathbf{10} + Y_{\overline{126}}^* \mathbf{16} \cdot \mathbf{16} \cdot \overline{\mathbf{126}} + Y_{120}^* \mathbf{16} \cdot \mathbf{16} \cdot \mathbf{120} + \text{h.c.},$

After breaking to G_{SM}

$$Y_{10} \Big[(\overline{Q}u_R + \overline{L}\nu_R) h_{10}^u + (\overline{Q}d_R + \overline{L}e_R) h_{10}^d \Big] + \frac{1}{\sqrt{3}} Y_{\overline{126}} \Big[(\overline{Q}u_R - 3\overline{L}\nu_R) h_{\overline{126}}^u + (\overline{Q}d_R - 3\overline{L}e_R) h_{\overline{126}}^d \Big]$$
$$+ Y_{120} \Big[(\overline{Q}u_R + \overline{L}\nu_R) h_{120}^u + (\overline{Q}d_R + \overline{L}e_R) h_{120}^d + \frac{1}{\sqrt{3}} (\overline{Q}u_R - 3\overline{L}\nu_R) h_{120}^{u'} + (\overline{Q}d_R - 3\overline{L}e_R) h_{120}^{d'} \Big]$$
$$+ h.c.$$

Rotating the Higgs fields to their mass basis, we derive Yukawa couplings to the SM Higgs $J_{L}\bar{L}h_{SM}\nu_{R} + Y_{e}\bar{L}h_{SM}e_{R} + h.c.$

$$Y_u \bar{Q} \tilde{h}_{\rm SM} u_R + Y_d \bar{Q} h_{\rm SM} d_R + Y_\nu$$

$$\begin{split} Y_u &= Y_{10}V_{11}^* + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{12}^* + Y_{120}\left(V_{13}^* + \frac{1}{\sqrt{3}}V_{14}^*\right) \\ Y_d &= Y_{10}V_{15} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} + \frac{1}{\sqrt{3}}V_{18}\right) \\ Y_\nu &= Y_{10}V_{11}^* - \sqrt{3}Y_{\overline{126}}V_{12}^* + Y_{120}\left(V_{13}^* - \sqrt{3}V_{14}^*\right) \\ Y_e &= Y_{10}V_{15} - \sqrt{3}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} - \sqrt{3}V_{18}\right). \end{split}$$

$$Y_{u} = Y_{10}V_{11}^{*} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} + \frac{1}{\sqrt{3}}V_{14}^{*}\right)$$
$$Y_{d} = Y_{10}V_{15} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} + \frac{1}{\sqrt{3}}V_{18}\right)$$
$$Y_{\nu} = Y_{10}V_{11}^{*} - \sqrt{3}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} - \sqrt{3}V_{14}^{*}\right)$$
$$Y_{e} = Y_{10}V_{15} - \sqrt{3}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} - \sqrt{3}V_{18}\right).$$

$$Y_{u} = Y_{10}V_{11}^{*} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} + \frac{1}{\sqrt{3}}V_{14}^{*}\right)$$
$$Y_{d} = Y_{10}V_{15} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} + \frac{1}{\sqrt{3}}V_{18}\right)$$
$$Y_{\nu} = Y_{10}V_{11}^{*} - \sqrt{3}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} - \sqrt{3}V_{14}^{*}\right)$$
$$Y_{e} = Y_{10}V_{15} - \sqrt{3}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} - \sqrt{3}V_{18}\right).$$

$$Y_{u} = Y_{10}V_{11}^{*} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} + \frac{1}{\sqrt{3}}V_{14}^{*}\right)$$

$$Y_{d} = Y_{10}V_{15} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} + \frac{1}{\sqrt{3}}V_{18}\right)$$

$$Y_{\nu} = Y_{10}V_{11}^{*} - \sqrt{3}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} - \sqrt{3}V_{14}^{*}\right)$$

$$Y_{e} = Y_{10}V_{15} - \sqrt{3}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} - \sqrt{3}V_{18}\right).$$

Institute for Particle Physics Phenomenology

Jessica Turner

GUT Model

$$Y_{u} = Y_{10}V_{11}^{*} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} + \frac{1}{\sqrt{3}}V_{14}^{*}\right)$$
$$Y_{d} = Y_{10}V_{15} + \frac{1}{\sqrt{3}}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} + \frac{1}{\sqrt{3}}V_{18}\right)$$
$$Y_{\nu} = Y_{10}V_{11}^{*} - \sqrt{3}Y_{\overline{126}}V_{12}^{*} + Y_{120}\left(V_{13}^{*} - \sqrt{3}V_{14}^{*}\right)$$
$$Y_{e} = Y_{10}V_{15} - \sqrt{3}Y_{\overline{126}}V_{16} + Y_{120}\left(V_{17} - \sqrt{3}V_{18}\right).$$

$$\begin{aligned} Y_u &= h + r_2 f + i r_3 h', \quad Y_d = r_1 \left(h + f + i h' \right), \quad Y_\nu = h - 3 r_2 f + i c_\nu h' \\ Y_e &= r_1 \left(h - 3 f + i c_e h' \right), \quad M_{\nu_R} = f \frac{\sqrt{3} r_1}{V_{16}} v_S \end{aligned}$$

$$h = Y_{10}V_{11}, f = Y_{\overline{126}}\frac{V_{16}}{\sqrt{3}}\frac{V_{11}^*}{V_{15}}, c_e = \frac{V_{17} - \sqrt{3}V_{18}}{V_{17} + V_{18}/\sqrt{3}}, \qquad c_\nu = \frac{V_{13}^* - \sqrt{3}V_{14}^*}{V_{17} + V_{18}/\sqrt{3}}\frac{V_{15}}{V_{11}^*}, r_1 = \frac{V_{15}}{V_{11}^*}, \qquad r_2 = \frac{V_{12}^*}{V_{16}}\frac{V_{15}}{V_{11}^*}, \qquad r_3 = \frac{V_{13}^* + V_{14}^*/\sqrt{3}}{V_{17} + V_{18}/\sqrt{3}}\frac{V_{15}}{V_{11}^*}, \quad h' = -iY_{120}\left(V_{17} + V_{18}/\sqrt{3}\right)\frac{V_{11}^*}{V_{15}},$$

Institute for Particle Physics Phenomenology

Jessica Turner

GUT Model

$$\begin{split} Y_{\nu} &= -\frac{3r_2 + 1}{r_2 - 1}Y_u + \frac{4r_2}{r_1 \left(r_2 - 1\right)}\operatorname{Re} Y_d + i\frac{c_{\nu}}{r_1}\operatorname{Im} Y_d \\ Y_e &= -\frac{4r_1}{r_2 - 1}Y_u + \frac{r_2 + 3}{r_2 - 1}\operatorname{Re} Y_d + ic_e\operatorname{Im} Y_d \end{split}$$

$$M_{\nu} = m_0 \left(\frac{8r_2 (r_2 + 1)}{r_2 - 1} Y_u - \frac{16r_2^2}{r_1 (r_2 - 1)} \operatorname{Re} Y_d + \frac{r_2 - 1}{r_1} (r_1 Y_u + ic_{\nu} \operatorname{Im} Y_d) (r_1 Y_u - \operatorname{Re} Y_d)^{-1} (r_1 Y_u - ic_{\nu} \operatorname{Im} Y_d) \right)$$

Institute for Particle Physics Phenomenology

GUT Model

	Multiplet	Role in the model
Fermions	16	Contains all SM fermions and RH neutrinos
	10	Generates fermion masses
	45	Triggers intermediate symmetry breaking
Higgses	54	Triggers GUT symmetry breaking
	120	Generates fermion masses
	$\overline{126}$	Generates fermion masses & intermediate symmetry breaking
	210	Triggers intermediate symmetry breaking

SO(10)	16
G_3	$({f 4},{f 2},{f 1})_L+(\overline{f 4},{f 1},{f 2})_{R^c}$
G_2	$egin{aligned} & (3,2,1,1/6)_{Q_L}+(\overline{3},1,2,-1/6)_{Q_R^c} \ & +(1,2,1,-1/2)_{l_L}+(1,1,2,1/2)_{l_R^c} \end{aligned}$
G_1	$egin{aligned} & (3,2,1,1/6)_{Q_L}+(\overline{3},1,2,-1/6)_{Q_R^c} \ & +(1,2,1,-1/2)_{l_L}+(1,1,2,1/2)_{l_R^c} \end{aligned}$
$G_{ m SM}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Matter field decomposition

Jessica Turner

GUT Model Particle Content

SO(10)	54	210	45	126
G_3	$({f 1},{f 1},{f 1})$	$({f 15},{f 1},{f 1})_1$	$({f 15},{f 1},{f 1})_2$	$({f 10},{f 1},{f 3})+(\overline{{f 10}},{f 3},{f 1})$
G_2	_	$({f 1},{f 1},{f 1},0)_1$	$({f 1},{f 1},{f 1},0)_2$	(1, 1, 3, -1) + (1, 3, 1, 1)
G_1	_	_	$({f 1},{f 1},{f 1},0)_2$	$({f 1},{f 1},{f 3},-1)$
$G_{ m SM}$	_	_	_	$({f 1},{f 1},0)_S$

SO(10) Higgs reps for SSB

SO(10)	10	$\overline{126}$	120
C	$({f 1},{f 2},{f 2})_1$	$({f 15},{f 2},{f 2})_1$	$({f 1},{f 2},{f 2})_2+({f 15},{f 2},{f 2})_2$
G3		$+ ({f 10},{f 1},{f 3}) + (\overline{f 10},{f 3},{f 1})$	
G_2	$({f 1},{f 2},{f 2},0)_1$	$({f 1},{f 2},{f 2},0)_2$	$({f 1},{f 2},{f 2},0)_{3,4}$
		+(1, 1, 3, -1) + (1, 3, 1, 1)	
G_1	$({f 1},{f 2},{f 2},0)_1$	$({f 1},{f 2},{f 2},0)_2$	$({f 1},{f 2},{f 2},0)_{3,4}$
		$+({f 1},{f 1},{f 3},-1)$	
	$(1, 2, -1/2)_{h_{10}^u}$	$(1,2,-1/2)_{h^u_{126}}$	$(1, 2, -1/2)_{h_{120}^u, h_{120}^{u'}}$
$G_{ m SM}$	$+(1,2,+1/2)_{h_{10}^d}$	$+({f 1},{f 2},+1/2)_{hrac{d}{{f 126}}}$	$+(1,2,+1/2)_{h_{120}^{d},h_{120}^{d'}}^{h_{120}^{d}}$
		$+(1,1,0)_S$	

SO(10) Higgs reps for fermion mass generation

Benchmark 1 RGE

GUT Model Particle Content

Overlap with PTA experiments

 $A \equiv$ amplitude parameter of correlation between pulsars.

Institute for Particle Physics Phenomenology

Leptogenesis Equations

$$\begin{split} \frac{dN_{\alpha\beta}^{B-L}}{dz} &= \sum_{i=1}^{3} \varepsilon_{\alpha\beta}^{(i)} D_{i} \left(N_{N_{i}} - N_{N_{i}}^{\mathrm{eq}} \right) - \frac{1}{2} W_{i} \left\{ \mathcal{P}^{(i)0}, N^{B-L} \right\}_{\alpha\beta} \\ &- \frac{\mathrm{Im} \left(\Lambda_{\tau} \right)}{Hz} \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right] \right]_{\alpha\beta} \\ &- \frac{\mathrm{Im} \left(\Lambda_{\mu} \right)}{Hz} \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right] \right]_{\alpha\beta}, \end{split}$$

$$N^{B-L} = \begin{pmatrix} N_{\tau\tau} & N_{\tau\mu} & N_{\tau e} \\ N_{\mu\tau} & N_{\mu\mu} & N_{\mu e} \\ N_{e\tau} & N_{e\mu} & N_{ee} \end{pmatrix}, \quad \mathcal{P}^{(i)0} = \frac{1}{\left(\tilde{Y}_{\nu}^{\dagger} \tilde{Y}_{\nu}\right)_{ii}} \begin{pmatrix} \left|\tilde{Y}_{\nu\tau i}\right|^{2} & \tilde{Y}_{\nu\tau i} \tilde{Y}_{\nu\mu i} & \tilde{Y}_{\nu\tau i} \tilde{Y}_{\nu ei} \\ \tilde{Y}_{\nu\tau i} \tilde{Y}_{\nu\mu i} & \left|\tilde{Y}_{\nu\mu i}\right|^{2} & \tilde{Y}_{\nu\tau i} \tilde{Y}_{\nu ei} \\ \tilde{Y}_{\nu ei} \tilde{Y}_{\nu\tau i} & \tilde{Y}_{\nu\mu i} \tilde{Y}_{\nu\tau i} & \left|\tilde{Y}_{\nu ei}\right|^{2} \end{pmatrix}$$

Jessica Turner

٠