Light vectors from baryonic and lepton family numbers with harmless Wess-Zumino terms

Claudio Toni

based on the work with Marco Nardecchia and Luca Di Luzio published in Phys.Rev.D 105 (2022) 11, 115042

Claudio Toni – BLV 05/09/2022

Light vectors from abelian SM extension

- \triangleright Light vectors provide a possible solution to many low-energy anomalies (e.g. muon's g-2) or a good candidate as mediator to dark sectors.
- ➢ Many BSM models including a light vector have been proposed in the past few years.
- \triangleright We proposed a BSM extension including a light vector coming from the gauging of a new abelian symmetry. \triangleright The gauge group of our model is then:

$$
G_{SM} \times U(1)_X = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X
$$

 \triangleright For simplicity, we assumed the SM Yukawa sector to be invariant under the new gauge symmetry. \triangleright X is then a combination of the SM incidental symmetries, i.e. the baryonic number and lepton family numbers:

$$
X = \alpha_B B + \sum_{i=e,\,\mu,\,\tau} \alpha_i L_i
$$

Light vectors and anomalous currents

- ➢ Unless few specific cases, if no new fermions are introduced, the new gauge current is conserved at tree level but broken at loop by chiral anomaly.
- \triangleright An example is the current of the baryon number:

$$
\partial^\mu J_\mu^{\rm baryon} = \frac{\mathcal{A}}{16\pi^2} \left(g^2 W^a_{\mu\nu} (\tilde{W}^a)^{\mu\nu} - g'^2 B_{\mu\nu} \tilde{B}^{\mu\nu} \right)
$$

- \triangleright If a light vector couples to a non conserved current, there are (energy/vector mass)^2 enhanced processes involving the longitudinal mode of the new vector.
- \triangleright Such energy-enhanced processes can be the dominant production mechanism in high-energy experiments, and can place strong constraints on its coupling.

Example: let's consider a light vector with $m = 1$ MeV emitted in a physical process whose energy is around 1 GeV

Enhanced by a factor of $(1 \text{ GeV}/1 \text{ MeV})^2 = 10^6$!

WZ coefficient at 1-loop matching

➢ For example, a model of gauged baryon number requires anomalons to be consistent. Once integrated out, anomaly cancellation is preserved by WZ terms.

> $SU(2)_L^2U(1)_B=\frac{3}{2}$
 $U(1)_Y^2U(1)_B=-\frac{3}{2}$ $\begin{split} \mathcal{L} &\supset C_B g_X g'^2 \epsilon^{\mu\nu\rho\sigma} X_\mu B_\nu \partial_\rho B_\sigma \\ &+ C_W g_X g^2 \epsilon^{\mu\nu\rho\sigma} X_\mu (W^a_\nu \partial_\rho W^a_\sigma + \frac{1}{3} g \epsilon^{abc} W^a_\nu W^b_\rho W^c_\sigma) \end{split}$

 \triangleright Only the combinations $L_e - L_\mu$, $L_\tau - L_\mu$ and $L_e - L_\tau$ are free-anomaly in the SM.

 \triangleright The gauging of a general linear combination of SM accidental symmetries is anomalous.

 $SU(2)_L^2 \times U(1)_X$ proportional to $3\alpha_B + \alpha_e + \alpha_\mu + \alpha_\tau \equiv 3\alpha_{B+L}$
U(1)_Y × U(1)_X

➢ The values of the WZ coefficients depend on the UV completion.

➢ XWW operator leads to flavor changing neutral current (FCNC) interactions

➢ XWW operator leads to flavor changing neutral current (FCNC) interactions

➢ XWW operator leads to flavor changing neutral current (FCNC) interactions

Gauging the accidental symmetries

- ➢ The main question of our work was: can we avoid such strong constrains?
- \triangleright The answer is yes: mostly chiral anomalons suppress the coefficients of the WZ terms involving the electroweak gauge bosons, thus relaxing the bounds!

Gauging the accidental symmetries

➢ The main question of our work was: can we avoid such strong constrains?

 \triangleright The answer is yes: mostly chiral anomalons suppress the coefficients of the WZ terms involving the electroweak gauge bosons, thus relaxing the bounds!

 \triangleright However, mostly chiral fermions would modify the SM prediction of the Higgs decay channels.

 \triangleright The goal is then to introduce a UV completion made of mostly chiral anomalons while being compatible with experimental measurements of Higgs decays.

UV completion

- ➢ Anomaly-cancelling fermions are highlighted in pink.
- \triangleright Anomalon $U(1)_X$ charges were chosen by the requirement that the electroweak-charged anomalons pick up mass from the SM Higgs

$$
-\mathscr{L}_Y = y_1 \overline{\mathcal{L}}_L \mathcal{E}_R H + y_2 \overline{\mathcal{L}}_R \mathcal{E}_L H + y_3 \overline{\mathcal{L}}_L \mathcal{N}_R \tilde{H} + y_4 \overline{\mathcal{L}}_R \mathcal{N}_L \tilde{H} + \text{h.c.}
$$

➢ A SM-singlet Higgs is added to give mass to the new gauge bosons but not to the electroweak-charged anomalons.

Higgs decay channels

➢ Mostly-chiral electroweak anomalons, needed to decouple dangerous WZ terms, would produced a signal in Higgs decays

$$
R_{\gamma\gamma} = \frac{{\left| {\cal A}_{\gamma\gamma}^{\rm SM} + {\cal A}_{\gamma\gamma}^{\rm NP} \right|}^2}{{\left| {\cal A}_{\gamma\gamma}^{\rm SM} \right|}^2} \hspace{2cm} {\cal A}_{\gamma\gamma}^{\rm NP} \approx - 2 {\cal A}_{\gamma\gamma}^{\rm SM}
$$

- \triangleright In the limit of heavy fermions, the anomalon contribution to the decays depends on the Y parameter.
- \triangleright Our prediction is compatible with the di-photon channel for $|Y - 1/2| \approx 3/2$, while leading a large deviation to the correlated signal in the γZ channel to be tested at the High Luminosity phase at LHC.

Direct searches

Stable anomalons

- \triangleright |Y-1/2|≈3/2 but |Y-1/2|≠3/2
- \triangleright EW anomalon-SM mixing terms are forbidden and the lightest state of the electroweak anomalons is electrically charged and stable
- \triangleright Need to invoke low-scale inflation to avoid cosmological problems
- \triangleright Stable charged particles yield striking signatures at colliders in the forms of charged track, anomalous energy loss in calorimeters, longer time of flights, etc
- \triangleright Actual experimental limits from CMS at 13 TeV LHC yielding $m \geq 800$ GeV

Unstable anomalons

- \triangleright |Y-1/2|=3/2
- \triangleright EW anomalons can actually mix with the SM leptons, opening new decay channels
- \triangleright Anomalons with electric charge $|Q| = 2$ can decay into a *W* and a $|Q| = 1$ fermion, while the latter can mix with SM leptons and decay into $Z\ell$ or $h\ell$
- ➢ Bounds appear to be of the same order of those obtained in the case of stable charged leptons.

Yukawas of the anomalons to the boundary of perturbativity!

THANKS FOR THE ATTENTION!

Claudio Toni – BLV 05/09/2022

BACK UP

Claudio Toni – BLV 05/09/2022

- \triangleright At quantum level, chiral anomaly can break classical symmetry.
-

- \triangleright At quantum level, chiral anomaly can break classical symmetry.
- \triangleright Chiral anomaly occurs at one-loop level trough triangle with fermion fields:

- \triangleright At quantum level, chiral anomaly can break classical symmetry.
- \triangleright Chiral anomaly occurs at one-loop level trough triangle with fermion fields:

- \triangleright At quantum level, chiral anomaly can break classical symmetry.
- ➢ Chiral anomaly occurs at one-loop level trough triangle with fermion fields:

 \triangleright A gauge symmetry is conserved (and hence the theory is consistent) if

$$
\sum_{\text{fermions}} \left[\text{Tr} \, Q_R^A \{ Q_R^B, Q_R^C \} - \text{Tr} \, Q_L^A \{ Q_L^B, Q_L^C \} \right] = 0
$$

 \triangleright Uncancelled chiral anomalies requires new fermions to have a consistent gauge theory!

Anomaly matching and WZ operators

- \triangleright One of the most important EFT operator is the Wess-Zumino (WZ) term Γ_{WZ} .
- \triangleright The WZ term is a functional of gauge vector bosons and Goldstone fields of the theory.
- \triangleright WZ operators appear once we integrate out a fermion field from the theory.

$$
\mathcal{L}_{UV} \supset \sum_{i} \bar{\psi}_{i} i \partial \psi_{i} - \sum_{i,j} (\bar{\psi}_{iL} \mathcal{M}_{ij} \psi_{jR} + \text{h.c.}) - \sum_{a,i,j} \tilde{H}_{a} (\bar{\psi}_{iL} \mathcal{Y}_{ij}^{a} \psi_{jR} + \text{h.c.})
$$
\n
$$
- \sum_{i,j,A} g_{A} G_{\mu}^{A} \Big[\bar{\psi}_{iL} \gamma^{\mu} (Q_{L}^{A})_{ij} \psi_{jL} + \bar{\psi}_{iR} \gamma^{\mu} (Q_{R}^{A})_{ij} \psi_{jR} \Big]
$$
\n
$$
\mathcal{S}_{eff} \supset \Gamma_{WZ} (G_{\mu}^{A}, \tilde{H}^{a})
$$

- \triangleright The WZ term matches the chiral anomaly of the UV fermions we integrated out from the theory.
- \triangleright They are crucial to keep the theory free-anomaly and hence consistent.

$$
\delta\Gamma_{WZ}|_{Q^A} = \sum_{BC} \frac{g_B g_C}{48\pi^2} \left[\text{Tr}\, Q_R^A \{ Q_R^B, Q_R^C \} - \text{Tr}\, Q_L^A \{ Q_L^B, Q_L^C \} \right] \int d^4x \, \alpha_A \partial_\alpha G_\mu^B \partial_\beta G_\nu^C \epsilon^{\alpha\mu\beta\nu}
$$

EFT framework

- \triangleright Uncancelled anomalies requires new fermion fields (the "anomalons") otherwise no gauging is possible.
- \triangleright Anomalon fermions are supposed to be heavy, masses above hundreds of GeV, since we have not observed them so far.

Heavy physics: Anomalon fields

> Energy or mass scale Energy or mass scale

Light physics: $SM + light vector$

EFT framework

- \triangleright Uncancelled anomalies requires new fermion fields (the "anomalons") otherwise no gauging is possible.
- \triangleright Anomalon fermions are supposed to be heavy, masses above hundreds of GeV, since we have not observed them so far.

- \triangleright At low energy, we work with Effective Field Theory (EFT).
- ➢ Anomalon fields are integrated out.
- ➢ EFT operators are introduced to match the UV physics.

Heavyphy Anomalon fields Light physics: $SM + light vector$ $\mathscr{L}_{\textrm{EFT}} = \sum_{\alpha \in \mathscr{L}} \frac{c_i^{(\mathscr{D})} O_i^{(\mathscr{D})}}{\Lambda^{\mathscr{D} - d}}$

- ➢ Collection of experimental bounds from arxiv:1705.06726
- ➢ Here is considered the case of gauged baryonic number with SM-vector-like UV anomalon fields

$$
g_{Xd_id_j} = -\frac{3g^4 \mathcal{A}}{(16\pi^2)^2} g_X \sum_{\alpha \in \{u,c,t\}} V_{\alpha i} V_{\alpha j}^* F\left(\frac{m_\alpha^2}{m_W^2}\right)
$$

Assumed kinetic mixing $\epsilon \sim eg_X/(4\pi)^2$

Neutrino masses

➢ SM Higgs and SM-singlet Higgs yield Dirac and Majorana masses respectively for neutrinos

$$
-\mathscr{L}_{Y}^{\nu_{R}} = y_{D}^{i\beta} \bar{\ell}_{L}^{i} \nu_{R}^{\beta} \tilde{H} + \frac{1}{2} y_{\nu_{R}}^{\alpha\beta} \nu_{R}^{\alpha} \nu_{R}^{\beta} \mathcal{S}^{*} + \text{h.c.}
$$

$$
\longrightarrow \quad m_{D}^{i\beta} \bar{\ell}_{L}^{i} \nu_{R}^{\beta} + \frac{1}{2} M_{R}^{\alpha\beta} \nu_{R}^{\alpha} \nu_{R}^{\beta} + \text{h.c.}
$$

➢ Our model can accommodate a type-I see-saw mechanism:

$$
m_{\nu} = m_D M_R^{-1} m_D^T
$$