B Violation, L Violation and Lepton Flavour Violation at LHCb

Kristof De Bruyn On behalf of the LHCb Collaboration

2022 International Workshop on Baryon and Lepton Number Violation Brussels, Belgium – September 5th, 2022

From $b \rightarrow s\ell\ell$ Flavour Anomalies to Lepton Flavour Violation

Test of Lepton Flavour Universality

$$R_{\mathcal{K}} = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}}{\mathrm{d}q^2} \mathcal{B}(B^+ \to \mathcal{K}^+ \mu^+ \mu^-) \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}}{\mathrm{d}q^2} \mathcal{B}(B^+ \to \mathcal{K}^+ e^+ e^-) \mathrm{d}q^2} \qquad \xrightarrow{\mathrm{SM}} \qquad 1$$

From $b \rightarrow s\ell\ell$ Flavour Anomalies to Lepton Flavour Violation

Beyond the Standard Model physics introduced to explain LFUV in $b \rightarrow s\ell\ell$ transitionsalso predicts strongly enhanced LFV effects in $b \rightarrow s\ell\ell'$ transitions

[Glashow, Guadagnoli, Lane, arXiv:1411.0565]

- Strong motivation the search for $b \rightarrow s\mu e$ and $b \rightarrow s\tau\mu$ transitions
- B meson decays ideally suited for these searches

The LHCb Experiment

JINST 3 (2008) S08005

Extensive Physics Programme

- CP Violation
- Rare Decays
- Forward EW Physics
- Spectroscopy
- ▶ p+p, p+Pb, Pb+Pb

Data Collected

▶ ...

Run 1:
2011: 1 fb⁻¹ at 7 TeV
2012: 2 fb⁻¹ at 8 TeV
Run 2:
2015 to 2018: 6 fb⁻¹ at 13 TeV

- Forward arm spectrometer to study b- and c-hadron decays
 - Pseudo-rapidity coverage: $2 < \eta < 5$

iniversity of groningen

Overview of LHCb Results

Lepton Flavour Violation

	90% C.L. Limit	Data	Reference
B_s^0	${{\cal B}(B^0_s o au^\pm \mu^\mp) < 3.4 imes 10^{-5} \ {{\cal B}(B^0_s o e^\pm \mu^\mp) < 5.4 imes 10^{-9}}$	$3 \text{ fb}^{-1} \\ 3 \text{ fb}^{-1}$	LHCb-PAPER-2019-016 LHCb-PAPER-2017-031
B_d^0	${{\cal B}(B^0_s o au^\pm \mu^\mp) < 1.2 imes 10^{-5} \ {{\cal B}(B^0_d o e^\pm \mu^\mp) < 1.0 imes 10^{-9}}$	$3 \text{ fb}^{-1} \\ 3 \text{ fb}^{-1}$	LHCb-PAPER-2019-016 LHCb-PAPER-2017-031
B ⁺	$\begin{array}{l} {\cal B}(B^+\to K^+\mu^-\tau^+) < 3.9\times 10^{-5} \\ {\cal B}(B^+\to K^+\mu^-e^+) < 7.0\times 10^{-9} \\ {\cal B}(B^+\to K^+\mu^+e^-) < 6.4\times 10^{-9} \end{array}$	9 fb ⁻¹ 3 fb ⁻¹ 3 fb ⁻¹	LHCb-PAPER-2019-043 LHCb-PAPER-2019-022 LHCb-PAPER-2019-022
D^0	${\cal B}(D^0 o e^\pm \mu^\mp) < 1.3 imes 10^{-8}$	$3 \ \mathrm{fb}^{-1}$	LHCb-PAPER-2015-048
τ^{-}	$\begin{array}{l} {\cal B}(\tau^- \to \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8} \\ {\cal B}(\tau^- \to \bar{p} \mu^+ \mu^-) < 3.3 \times 10^{-7} \\ {\cal B}(\tau^- \to p \mu^- \mu^-) < 4.4 \times 10^{-7} \end{array}$	3 fb^{-1} 1 fb ⁻¹ 1 fb ⁻¹	LHCb-PAPER-2014-052 LHCb-PAPER-2013-014 LHCb-PAPER-2013-014

Lepton Number Violation

university of groningen

	90% C.L. Limit	Data	Reference
B ⁺	$ \begin{vmatrix} \mathcal{B}(B^+ \to K^- \mu^+ \mu^+) < 4.1 \times 10^{-8} \\ \mathcal{B}(B^+ \to \pi^- \mu^+ \mu^+) < 4.4 \times 10^{-8} \end{vmatrix} $	36 pb^{-1} 36 pb^{-1}	LHCb-PAPER-2011-009 LHCb-PAPER-2011-009

Lepton Flavour Violation	
1 Search for $B^0_d o K^{*0} \mu^\pm e^\mp$ and $B^0_s o \phi \mu^\pm e^\mp$	LHCb-PAPER-2022-008
2 Search for $B^0_d o K^{*0} au^\pm \mu^\mp$	to appear in LHCb-PAPER-2022-021
Baryon and Lepton Number Violation	
${f 3}$ Search for $B^0_d o p\mu^-$ and $B^0_s o p\mu^-$	to appear in LHCb-PAPER-2022-022

Branching Fraction Measurements at LHCb

Measure relative to known B meson decay

$$\mathcal{B}(\mathsf{Signal Mode}) = \mathcal{B}(\mathsf{Normalisation Mode}) \times \frac{1}{N_{\mathsf{norm}}} \times \frac{\epsilon_{\mathsf{norm}}}{\epsilon_{\mathsf{sig}}} \times N_{\mathsf{sig}}$$

Each search involves the same steps:

- **1** Event selection + fit to data \Rightarrow Number of signal events N_{sig}
- **2** Separate analysis of normalisation mode \Rightarrow Number of events N_{norm}
- **3** Selection efficiencies and systematic uncertainties \Rightarrow Ratio of efficiencies $\epsilon_{norm}/\epsilon_{sig}$
- 4 External input $\Rightarrow \mathcal{B}(Normalisation Mode)$
- ▶ All three searches use full Run 1+2 data sample (9 fb⁻¹)

Search for $B^0_d o K^{*0} \mu^\pm e^\mp$ and $B^0_s o \phi \mu^\pm e^\mp$

Main Backgrounds

- I Misreconstructed background from $B^0_d \to \psi(nS)(\to \ell^+\ell^-)K^{*0}$ and $B^0_s \to \psi(nS)(\to \ell^+\ell^-)\phi$
 - 1 One of the leptons from the J/ψ or $\psi(2S)$ is misidentified: $(\ell o \ell')$
 - Veto the B_d^0 mass range in the $K^+\pi^- J/\psi$ and $K^+\pi^-\psi(2S)$ invariant mass distributions
 - ▶ Veto the B_s^0 mass range in the K^+K^-J/ψ and $K^+K^-\psi(2S)$ invariant mass distributions
 - **2** Double misID of one meson plus one lepton: $(h \leftrightarrow \ell)$
 - ▶ Veto the K^{*0} mass range in the $K\ell_{\pi\to\ell}$ and $\pi\ell_{K\to\ell}$ invariant mass distributions
 - Veto the ϕ mass range in the $K\ell_{K\to\ell}$ invariant mass distribution
- 2 Partially reconstructed background from $B_d^0 \to D^{(*)-}\ell^+\nu_\ell$ and $B_s^0 \to D_s^{(*)-}\ell^+\nu_\ell$
 - Eliminated by the requirement $m(K^+\pi^-\ell^{\pm}) > 2 \,\text{GeV}/c^2$ and $m(K^+K^-\ell^{\pm}) > 2 \,\text{GeV}/c^2$
- B Partially reconstructed background from $B^0_d \to D^{*-}_2 \ell^+ \nu_\ell$ and $B^0_s \to D^{*-}_{s2} \ell^+ \nu_\ell$
 - ▶ Dominant contributions from $B_d^0 \rightarrow D_2^*(2460)^- \ell^+ \nu_\ell$ and $B_s^0 \rightarrow D_{s2}^*(2573)^- \ell^+ \nu_\ell$
 - Background is modelled in the fit to data
- **4** Combinations of $B^+ o ar{D}^0 (o K^+ \ell^- ar{
 u}_\ell) \ell'^+
 u_{\ell'}$ and random pion
 - Only affects $B^0_d o K^{*0} \mu^{\pm} e^{\mp}$
 - Background is modelled in the fit to data
- **5** Combinatorial Background
 - Background is modelled in the fit to data

Fit to Data

Fit Model

- Signal: Sum of 2 Crystal Ball functions
 - Shape parameters taken from simulation
 - Mass resolution corrected using $B_d^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^{*0}$ and $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\phi$
- Partially reconstructed Bkgs: Model with KDE based on simulation
- Combinatorial Bkg: Single exponential
- Simultaneous fit to 3 data taking periods:
 - **1** Run 1: 2011+2012
 - 2 Run 2a: 2015+2016
 - **3** Run 2b: 2017+2018
- No excess found ⇒ Set an upper limit

Main Systematic Uncertainties

- Branching fraction of normalisation mode
 - ▶ For $B^0_d \to K^{*0} \mu^{\pm} e^{\mp}$ this is $B^0_d \to J/\psi(\to \mu^+\mu^-)K^{*0}$: Effect is 4.0%
 - For $B_s^0 \to \phi \mu^{\pm} e^{\mp}$ this is $B_s^0 \to J/\psi(\to \mu^+\mu^-)\phi$: Effect is 4.8%
 - These are also potential backgrounds and are explicitly vetoed in the selection of signal candidates
- 2 Decay time distribution of $B_s^0 \rightarrow \phi \mu^{\pm} e^{\mp}$
 - Because B_s meson decay width difference $\Delta\Gamma_s \neq 0$
 - Heavy and light mass eigenstates have difference lifetimes, and thus different selection efficiencies
 - Unknown mixture of the heavy and light mass eigenstates impacts the time-integrated branching fraction
 - Effect is 3.8% to 4.5%
- 3 Total relative systematic uncertainty
 - For $B_d^0 \to K^{*0} \mu^{\pm} e^{\mp}$: 5.2% to 6.7% (depending on data taking period)
 - For $B_s^0 \to \phi \mu^{\pm} e^{\mp}$: 6.9% to 8.5% (depending on data taking period)

Limit on $B^0_d o K^{*0} \mu^+ e^-$

iniversity of groningen

LHCb-PAPER-2022-008

• Expected Limit: $\mathcal{B}(B^0_d \to K^{*0}\mu^+e^-) < 4.8 \times 10^{-9}$ at 90% C.L.

Limit on $B^0_d \to K^{*0} \mu^- e^+$

iniversity of groningen

LHCb-PAPER-2022-008

Limit on $B^0_d o K^{*0} \mu^\pm e^\mp$

iniversity of groningen

LHCb-PAPER-2022-008

Limit on $B_s^0 \rightarrow \phi \mu^{\pm} e^{\mp}$

iniversity of groeningen

Search for $B^0_d o K^{*0} au^\pm \mu^\mp$

Event Reconstruction

τ Lepton

- $\blacktriangleright \ \tau$ lepton is short-lived and decays before reaching the detector
- Only reconstruct $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$ and $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$
- Introduces additional challenges:
 - I Loss of statistics: selected au decays have a combined branching fraction of only 14%
 - 2 Neutrinos escape undetected: no clear peak in the invariant mass distribution

Corrected Mass

- Missing information: momentum of the neutrino
- ▶ ... but it must balance momentum of $K^*\mu$ system in the *B* rest frame
- Partially recover using observable

$$m_{
m corr}\equiv \sqrt{m{p}_{ot}^2+m_{K^{st\, au\mu}}^2}+m{p}_{ot}$$

- \triangleright p_{\perp} is the component of the missing momentum perpendicular to flight direction of the B meson
- ▶ Signal peaks in *m*_{corr}, but limited resolution

Fit to Data

Fit Model

- Signals: double-sided Crystal Ball function
 - Shape parameters taken from simulation
- Background: double-sided Crystal Ball function
 - Main sources:
 - For $B^0_d \to K^{*0} \tau^- \mu^+$: $B^0_d \to D^{*-} \mu^+ \nu_\mu$ For $B^0_d \to K^{*0} \tau^+ \mu^-$: $B^0_d \to D^{*-} \tau^+ \nu_\tau$
 - Shape parameters taken from a fit to data using dedicated control region
- Simultaneous fit to 2 data taking periods:
 - 1 Run 1: 2011+2012
 - 2 Run 2: 2015 to 2018

•
$$B^0_d \to K^{*0} \tau^+ \mu^-$$
 and $B^0_d \to K^{*0} \tau^- \mu^+$
are fitted independently

▶ No excess found ⇒ Set an upper limit

Choice of control region for background modelling

- Select control region by relaxing the MVA requirement that suppresses combinatorial background
- Signal contamination for ${\cal B}(B^0_d o K^{*0} au^\pm \mu^\mp) = 10^{-5}$ is < 5%
- Background shape parameters varied using alternative control regions
- ▶ This impacts limit by 18% to 26%
- 2 Branching fraction of normalisation Mode
 - $\blacktriangleright \ B^0_d \to D^- D^+_s \text{ with } D^- \to K^+ \pi^- \pi^- \text{ and } D^+_s \to K^+ K^- \pi^+$
 - Increases limit by 3% to 4%

Limit on $B^0_d \to K^{*0} \tau^- \mu^+$

groningen

to appear in LHCb-PAPER-2022-021

Search for $B_d^0 \rightarrow p\mu^-$ and $B_s^0 \rightarrow p\mu^-$

Fit to Data

Fit Model

 Signals: double-sided Crystal Ball function + Gaussian

Physics Bkg:

- Shapes taken from simulation
- Primarily: $\Lambda_b \rightarrow p \mu^- \bar{\nu}_{\mu}$
- Additional minor contributions: $B_d^0 \rightarrow \pi^- \mu^+ \nu_\mu$ and $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$
- Combinatorial Bkg: Single exponential

Simultaneous fit to 2 data taking periods:

- 1 Run 1: 2011+2012
- 2 Run 2: 2015 to 2018
- ...and 7 MVA bins
- No excess found \Rightarrow Set an upper limit

Limit on $B_d^0 \rightarrow p\mu^-$

university of groningen

Limit on $B_s^0 ightarrow p \mu^-$

university of groningen

Conclusion

Lepton Flavour Violation

- ▶ Based on 9 fb⁻¹ of data collected in 2011-2012 (Run 1) and 2015-2018 (Run 2) LHCb has put ...
- ... the most stringent limit on

$$\begin{split} \mathcal{B}(B^0_d \to {\mathcal K}^{*0} \mu^+ e^-) &< 5.7 \times 10^{-9} \text{ at } 90\% \text{ C.L.} \\ \mathcal{B}(B^0_d \to {\mathcal K}^{*0} \mu^- e^+) &< 6.8 \times 10^{-9} \text{ at } 90\% \text{ C.L.} \\ \mathcal{B}(B^0_d \to {\mathcal K}^{*0} \mu^\pm e^\mp) &< 10.1 \times 10^{-9} \text{ at } 90\% \text{ C.L.} \end{split}$$

▶ ... the first limit on

$$\begin{split} & \mathcal{B}(B^0_s \to \phi \mu^{\pm} e^{\mp}) < 16.0 \times 10^{-9} \text{ at } 90\% \text{ C.L.} \\ & \mathcal{B}(B^0_d \to K^{*0} \tau^+ \mu^-) < 1.0 \times 10^{-5} \text{ at } 90\% \text{ C.L.} \quad \text{[Preliminary]} \\ & \mathcal{B}(B^0_d \to K^{*0} \tau^- \mu^+) < 8.2 \times 10^{-6} \text{ at } 90\% \text{ C.L.} \quad \text{[Preliminary]} \end{split}$$

Baryon and Lepton Number Violation

▶ ... the first limit on

iniversity of groningen

$$\mathcal{B}(B^0_d \to p\mu^-) < 2.6 \times 10^{-9} \text{ at } 90\% \text{ C.L.}$$
 [Preliminary]
 $\mathcal{B}(B^0_s \to p\mu^-) < 1.2 \times 10^{-8} \text{ at } 90\% \text{ C.L.}$ [Preliminary]