LAr calorimeter R&D for FCC-ee Sampling fraction

Brieuc François (CERN) LAr Calo for FCC working meeting Nov. 26th, 2020

Updated geometry in FCCSW

- Updated geometry implemented in FCCSW
 - > Segmentation with fixed $\Delta\Theta$ (0.5625) instead of fixed $\Delta\eta$ (needed new segmentation factories in FCCSW)
 - > 12 longitudinal layers (radial depth of 1.5 cm for pre-sampler, 3.5 cm for the others)
 - > Updated calorimeter inner radius and absorber/gap thickness \rightarrow 1536 Φ cells (divided by 2 for the readout)
 - Currently only in my FCCSW fork: BrieucF:geometry_change
 - Can open a pull request against FCCSW master later (validation needed)

- Sampling fraction (SF) derived with a modified detector description: make the absorbers/readouts sensitive material and segment them to mimic the LAr segmentation
 - Event by event SF per longitudinal layer: energy deposited in active material / total energy in the given layer
 - Global SF: mean of a gaussian fit in a restricted range to prevent the tails to jeopardize the fit
- Study the energy dependence of sampling fraction
 - First MC generation: 5000 photon gun events with different energies (300 MeV, 1 GeV, 10 GeV, 50 GeV, 100 GeV), shot at 90°

 > 300 MeV photons have highly fluctuating sampling fractions, shower does not reach layer >~ 5 (benchmark not used in the rest of the talk)

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - > -10^{-4} to $+10^{-5}$ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - > -10^{-4} to $+10^{-5}$ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - > -10^{-4} to $+10^{-5}$ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - > -10^{-4} to $+10^{-5}$ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - > -10^{-4} to $+10^{-5}$ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

LAr Calorimeter for FCC-ee

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction per layer as a function of energy: linear fit
 - ~constant w.r.t. to incoming particle energy
 - \sim -10⁻⁴ to +10⁻⁵ slope, trend inverting when going from layer 0 to layer 11

- Sampling fraction goes from 10% to 22% between layer 1 and layer 11
- > SF energy dependence is extremely mild \rightarrow propose to use SF from 10 GeV sample

LAr Calorimeter for FCC-ee

brieuc.francois@cern.ch

- Sampling fraction per layer as a function of polar angle: linear fit
 - Generated three angles (50°, 70° and 90°) for the 1, 10 and 50 GeV benchmarks
 - ~constant w.r.t. to incoming particle polar angle
 - \sim -10⁻⁴ to +10⁻⁴ slope, trend less clear when going from layer 0 to layer 11 (fit uncertainties)

LAr Calorimeter for FCC-ee

LAr Calorimeter for FCC-ee

brieuc.francois@cern.ch

LAr Calorimeter for FCC-ee

> 1 GeV photon at 50° do not reach the end of the calorimeter

LAr Calorimeter for FCC-ee

Summary

- > SF mean does not vary significantly with
 - > Energy
 - Polar angle
- Propose to use 10 GeV sample at 90 degrees SF for all the benchmarks, at least for now
- Not much to gain in energy resolution by deriving SF as a function of energy or polar angle
 - Potential further improvement on energy resolution by a calibration method could come from a correction based on the shower depth
 - Will be studied later
- Moving now to the upstream material correction...

Additional material

Sampling fraction 300 MeV

Sampling fraction 10 GeV

Sampling fraction 50 GeV

Sampling fraction 100 GeV

CERN Sampling fraction 10 GeV, 90°

CERN

Sampling fraction 10 GeV, 70°

Sampling fraction 10 GeV, 50°

Sampling fraction 50 GeV, 50°

Sampling fraction per layer for different polar angle and energies

Full readout theta view

FCC-hh sampling fractions

Figure 14: Average sampling fraction (E = 50-200 GeV) calculated from the energy deposited by electrons in each of the 8 layers of the detector. Horizontal line represents the average sampling fraction, obtained without longitudinal segmentation.