

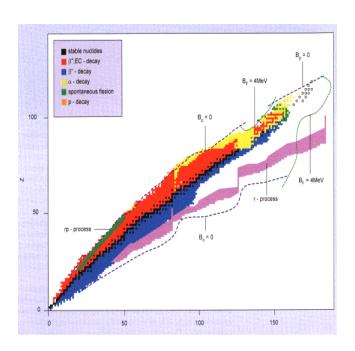
Beta-decay studies & Peering into Nuclear Structure

Useful References

Books

- ✓ "Handbook of nuclear spectroscopy", J. Kantele, 1995
- ✓ "Radiation detection and measurements", G.F. Knoll, 1989
- ✓ "Alpha-, Beta- and Gamma-ray Spectroscopy", Ed. K. Siegbahn, 1965
- ✓ "Introductory Nuclear Physics", K. S. Krane, 1988
- ✓ "Basic Ideas and Concepts in Nuclear Physics" K. Heyde IOP Publ. Ltd. 1994
- ✓ "Particle Emission from Nuclei" Ed. D.N. Poenaru & M.S. Ivaçcu CRD 1989 Vol I, II, III

Journal Articles

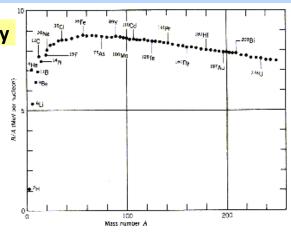

- ✓ Euroschool on Exotic Beams, Lectures Notes: "Decay Studies of N~Z Nuclei", E. Roeckl, Vol I, "Beta "Decay of exotic Nuclei", B. Rubio & W. Gelletly, Vol III
- ✓ B. Blank and M.J.G. Borge, Prog Part and Nuc. Phys 60 (2008) 403
- ✓ M. Pfützner, L.V. Grigorenco, M. Karny & K. Riisager, Rev. Mod. Phys, ArXiV:1111.0482
- ✓ V.I. Goldanskii , Ann. Rev. Nucl. Sci. 16 (1966)1
- ✓ P.I. Woods, C.N. Davids, Ann.Rev.Nucl.Part.Sci 47 (1997)541
- P. Buford Price, Ann.Rev.Nucl.Part.Sci. 39 (1989) 19

Atomic Mass Model

Relationship with Nuclear Decay Models

- 265 Stable nuclei
 4 o-o
 104 e-o
 60 Primordial (T_{1/2} > 10⁹y)
- ~ 2500 produced in nuclear reactions
- Decay characteristics of most radioactive nuclei determined by β-decay i.e. weak interaction
- Adding protons or neutrons new nuclei are created from the stable nuclei \rightarrow until the particle drip-lines ($S_p = 0$ or $S_n = 0$).

Nuclei beyond drip-line are unbound to nucleon emission, i.e. Strong interaction cannot bind one more nucleon to the nucleus



Binding Energy

- Strong interaction acts at very short distance.
- Naively one would expect A(A-1)/2 bonds and each E_{bond} ~constant thus giving: $BE(^{A}_{7}X_{N})/A \propto E_{2}$ (A-1) / 2
- Experimentally $BE(^{A}_{Z}X_{N})/A \propto 8$ MeV over the full region indicating
 - Nuclear and charge independent
 - Saturation of Nuclear Forces: $\rho_o \approx 0.17 \text{ N/fm}^3$
 - The less bound nucleon has an energy of ~ 8 MeV independent of the number of nucleons
 - → The independent particle picture holds : nucleons move in an average potential

Nuclear density is independent of A and 10¹⁴ times normal density

- BE/A as function of A has its maximum around
 A = 56-60 (⁶²Ni)
 - → Source of energy production
 - Fission of heavy nuclei
 - Fusion of light nuclei

Nuclear stability

$$BE(A,Z) = ZMpc^2 + NMnc^2 - M'(^{A}_{7}X_{N})c^2$$

Using the Bethe-Weizsäcker mass equation for BE(A,Z)

$$M'(_{Z}^{A}X_{N})c^{2} = ZMpc^{2} + NMnc^{2} - a_{v}A + a_{s}A^{2/3} + a_{c}Z(Z-1)A^{-1/3} + a_{A}(A-2Z)^{2}/A - a_{p}A^{-1/2}$$

For each A value this represents a quadratic equation in Z

$$x = Mnc^{2} - a_{v} + a_{A} + a_{s}A^{1/3}$$

$$M'(^{A}_{z}X_{N})c^{2} = xA + yZ + zZ^{2} + 0(\pm\delta)$$

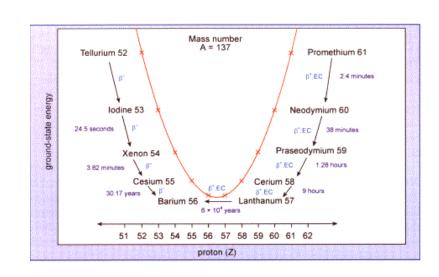
$$y = (Mp-Mn)c^{2} - 4a_{A} - a_{c}A^{1/3}$$

$$z = a_{c}A^{1/3} + 4a_{A}/A$$

$$Z = a_{c}A^{1/3} + 4a_{A}/A$$

$$Z = a_{c}A^{1/3} + 4a_{A}/A$$

$$\frac{\partial M}{\partial Z} = 0$$

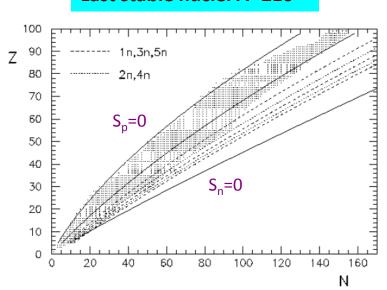

$$Z_0 \approx \frac{A/2}{1 + 0.007 A^{2/3}}$$

Thus for each A-value one can calculate the nucleus with lowest mass (largest binding energy):

For a given A a parabolic behaviour of the nuclear masses show up.

odd-A only one stable nucleus. The rest β^{\pm} decay towards the only stable nucleus.

even A both even-even and odd-odd \Rightarrow 2 parabolas implied by the mass equation.



Stability Against Radioactive Decay

Last stable nuclei A≈210

The conditions $S_n = 0$ and $S_p = 0$ establishes the drip-lines

Spontaneus α -decay ($S_{\alpha} = 0$) correspond to

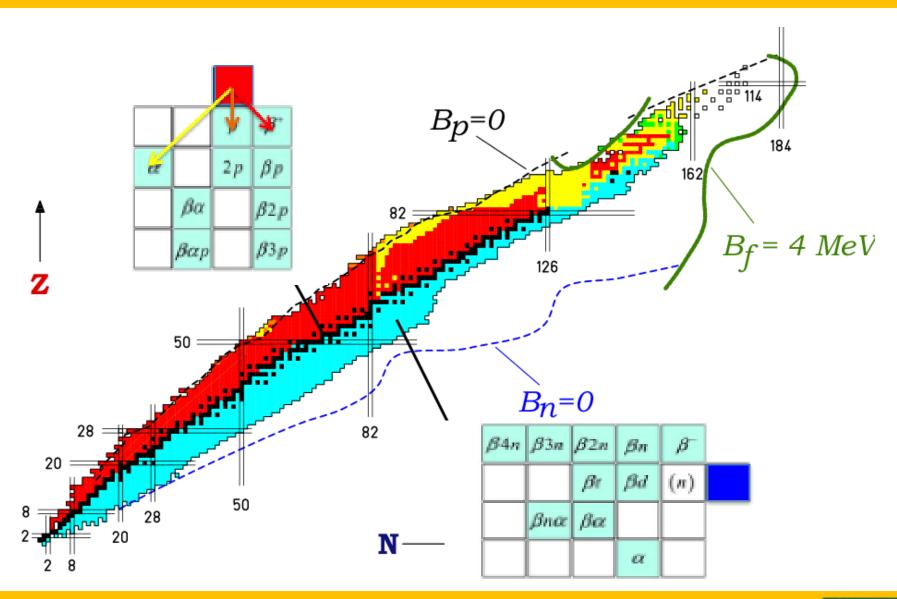
$$BE(_{Z}^{A}X_{N}) - [BE(_{Z-2}^{A-4}X_{N-2}) + BE(_{He}^{4})] = 0$$

The half-lives becomes short in the actinide region $A \approx 210$

The energy release in nuclear fission: $E_{fission} = M^1 \binom{A}{Z} X_N c^2 - 2M' \binom{A/2}{Z/2} X_{N/2} c^2$

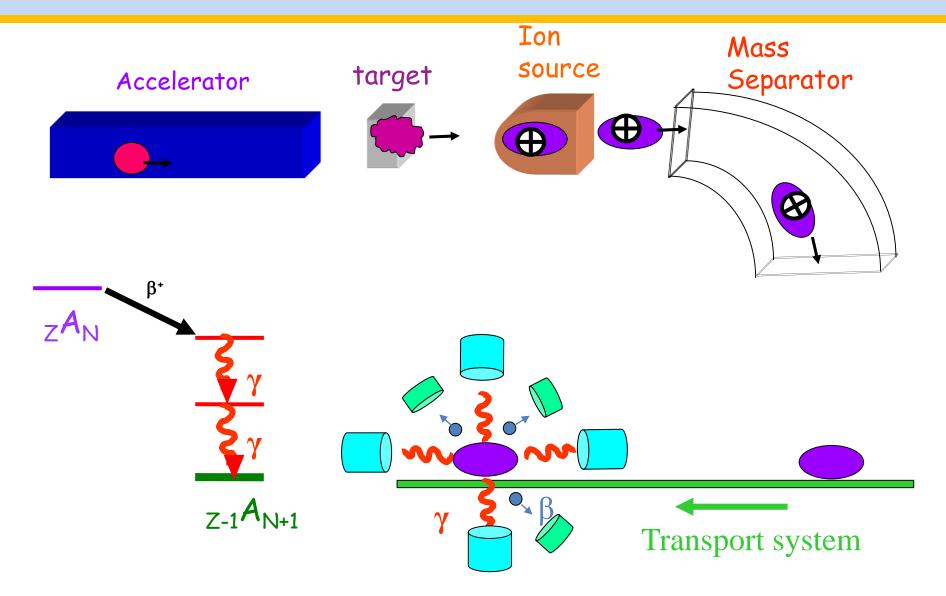
Using a simplified mass eq. where $Z(Z-1) \approx Z^2$ and neglecting the pairing corrections δ :

$$E_{fission} = [-5.12 A^{2/3} + 0.28 Z^2 A^{-1/3}] c^2$$


 $E_{fission} > 0$ for A ≈ 90 and $E_{fission} = 185$ MeV for ²³⁸U.

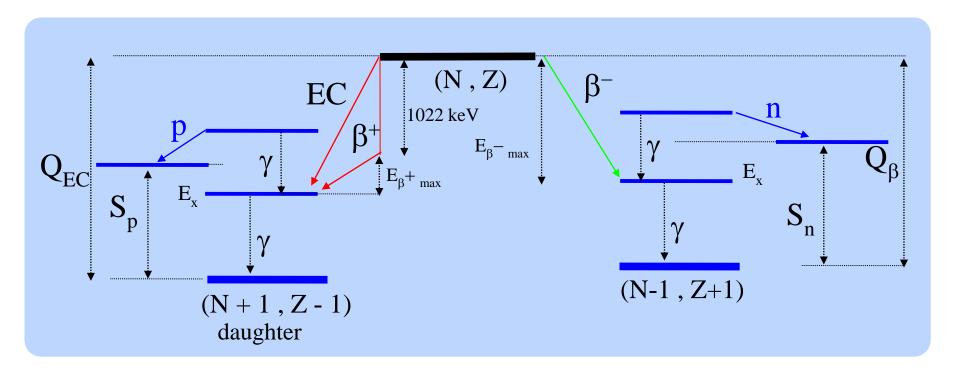
The fission products, neutron rich nuclei, mainly β \Rightarrow good source of electron anti-neutrinos.

Different decay modes


Beta-decay

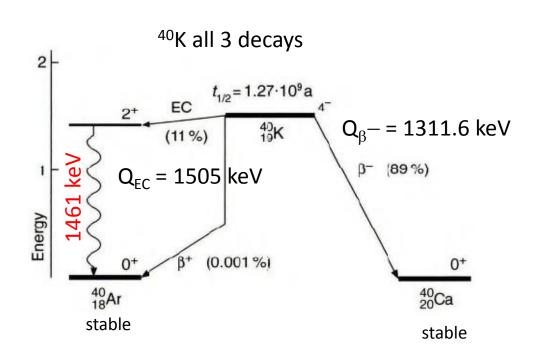
- Introduction
- Formalism
- Beta-decay and fundamental interactions
- Beta decay and the structure of the nucleus

Beta decay Studies



Introduction

Process mediated by the weak interaction between two isobars

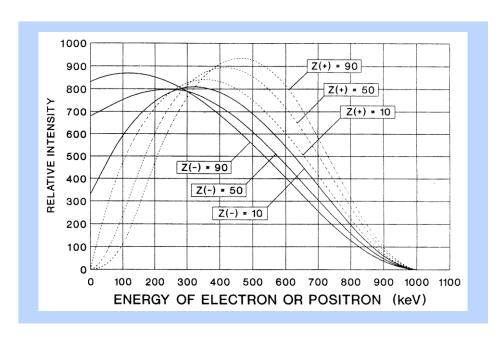

The decay of ⁴⁰K

► Radioactive decay :

- ⊳ probability per unit time

 λ
- \triangleright lifetime τ , half-life $t_{1/2}$
- ▷ activity A (decays per unit time)

$$au = 1/\lambda$$
 $t_{1/2} = \ln 2/\lambda$ $A(t) = \lambda \, N(t) = \lambda \, N_0 \, \mathrm{e}^{-\lambda t}$ $1 \, \mathrm{Bq} = 1 \, \mathrm{decay/s}$


- $> {}^{40}$ K is 0.01% of natural ${}^{39-41}$ K :
 - → K⁺ signal transmitter in nervous system
 - → 16% of human radiation exposure!
 - \rightarrow 70 kg human = 4,400 decays/s!

Introduction (II)

Spectra β[±]

Expand in a large E-scale

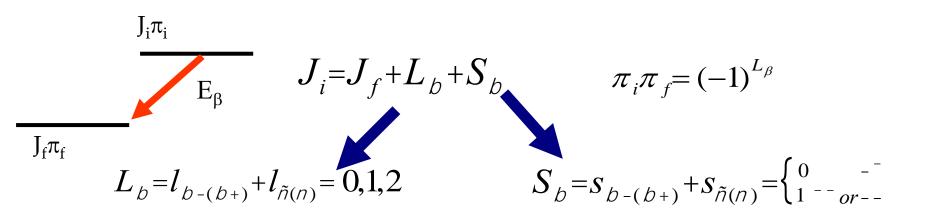
$$E_{\beta}$$
 = 18,6 keV (³H, β ⁻)

$$E_{\beta} = 22800 \text{ keV} (^{22}\text{N}, \beta^{-})$$

Half-life

$$T_{1/2}$$
: ms --> 10^{15} years

Emission of delayed particles


$$P_p = 6 \ 10^{-6} \ (^{151}Lu) \ to \ 100 \% \ (^{31}Ar)$$

$$P_n = 5.5 \ 10^{-4} \ (^{79} \, \text{Ge}) \text{ to } 99 \ \% \ (^{11} \, \text{Li})$$

35
 Na, $T_{1/2} = 1.5$ ms 148 Sm, $T_{1/2} = 7.10^{15}$ years

$$\beta$$
 p, β 2p, β 3p, ... β n, β 2n ...

Classification of \(\beta \)-decay transitions

 L_{β} = defines the degree of forbiddeness

allowed

forbidden

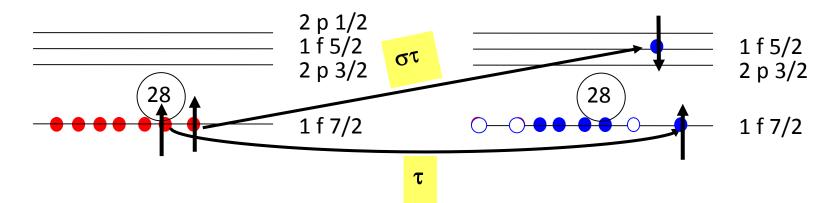
when
$$L_{\beta}=0$$
 and $\pi_i \pi_f=+1$

$$\Delta I = \left| I_i - I_f \right| \equiv 0,1$$

when the angular momentum conservation requires that

$$L_{\beta} > 0$$
 and/or $\pi_i \pi_f = -1$

Allowed transitions


$$J_{i} = J_{f} + L_{ev} + S_{ev}$$

$$L_{ev} = 0$$

$$\pi^{i} = \pi^{f} (-1)^{Lev}$$

spins \mathbf{v} & electron $\mathbf{\uparrow}$ $\mathbf{\uparrow}$ $\mathbf{\uparrow}$ $\mathbf{\uparrow}$ $\mathbf{\downarrow}$ $\mathbf{\downarrow}$ transition type Gamow Teller (GT)

access to the structure of the nucleus

Beta-decay Formalism

Fermi gold rule

$$|i> ---> |f>$$

 $p = 2\pi/h \mid M_{if}|^2 dn / dE$

Transition probability

$$M_{if} = \int \phi_f H \phi_i dv$$
; where H?

$$dn = dn_e \cdot dn_v = \frac{(4\rho)^2 V^2 p^2 dpq^2 dq}{L^6}$$

 $\begin{cases} & \text{Energy conservation} \\ & \text{dn} = \text{dn}_{\text{e}} \cdot \text{dn}_{\text{v}} = \frac{(4\rho)^2 V^2 p^2 dpq^2 dq}{h^6} \\ & \text{Radioactive decay constant: } \lambda = {}_0 \int^{\text{Po}} p \ dp \end{cases}$

$$\phi_{f} = \phi_{e} \phi_{n} \phi_{daughter}$$

$$\varphi_{e}(r) = \frac{1}{\sqrt{V}} e^{ip.r/\hbar} = \frac{1}{\sqrt{V}} \left[1 + \frac{i\vec{p}\cdot\vec{r}}{\hbar} + \dots \right] \approx \frac{1}{\sqrt{V}}$$

Density of final states

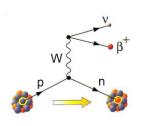
$$d\lambda = \frac{2\pi}{\hbar} g^2 |M_{if}|^2 (4\pi)^2 \frac{p^2 dp q^2}{h^6} \frac{dq}{dE_a}$$

For a certain β transition

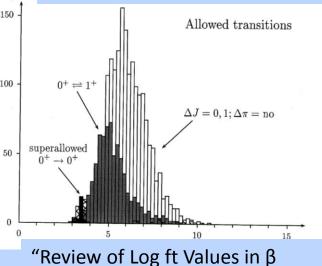
Radioactive constant

 $f(Z, E_\beta) t = Cte / |M_{if}|^2$

 $\lambda t = \text{Log2} = \text{Cte } |\mathbf{M}_{\text{if}}|^2 \text{ f } (\mathbf{Z}, \mathbf{E}_{\beta}) t$ $\text{for } \mathbf{Z} < 10$ $\text{for } \mathbf{Z} < 1\beta^+$ $\text{for } \mathbf{Z} < 1\beta^-$


Fermi function

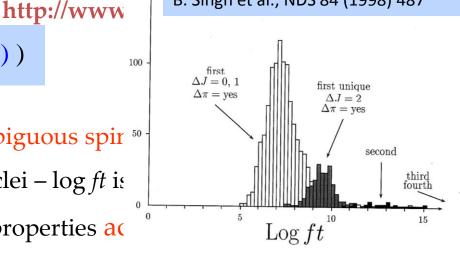
% β feeding


Classification of the transitions &

Snin_Darity ~3900 cases -> gives centroids and widths

log f t Independent of **Energy range** and Z

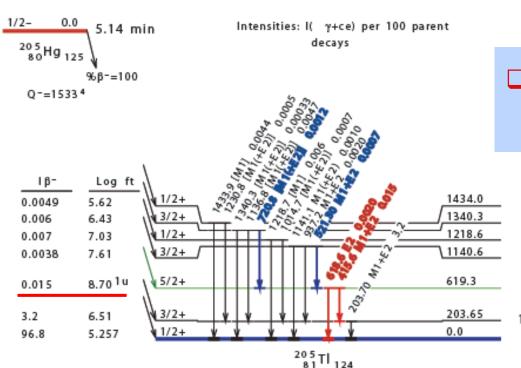
Transition type log f t super allowed, Fer₁₀₀ < 3,8 Allowed, Gamow < 5,9 "special allowed" > 6 first forbidden 7(1)first forbidden 8,5 (5) second forbidden ~ 13 Third forbidden ~ 18



decay"

B. Singh et al., NDS 84 (1998) 487

- Only a few cases where from logft unambiguous spir 50.
- □ "pandemonium effect" neutron rich nuclei log ft is
- needs to know the decay scheme and its properties ac


Practical example

$$t \equiv T_{1/2}^{\beta_i} = \frac{T_{1/2}^{\text{exp}}}{P_{\beta_i}}$$

$$P_{\beta_i} = \eta [I^{tot}(out) - I^{tot}(in)]$$

$$I^{tot}(out/in) = \sum_{i} I_{\gamma_i} (1 + \alpha_{T_i})$$

$$\alpha_T(M1 + E2) = \frac{\alpha_T(M1) + \delta^2 \alpha_T(E2)}{1 + \delta^2}$$

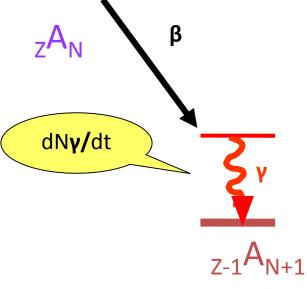
■ What we want to know accurately \checkmark T_{1/2}, I_ν, α_T & δ

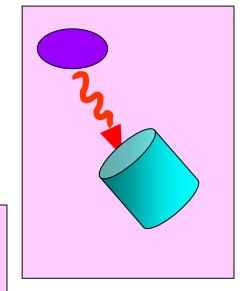
$$I^{tot}(521+721) = 0.086(16)$$

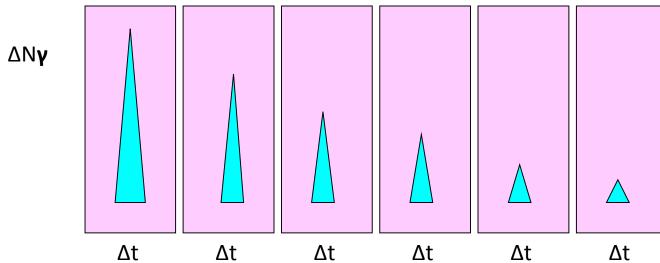
$$= 0.69(10)$$

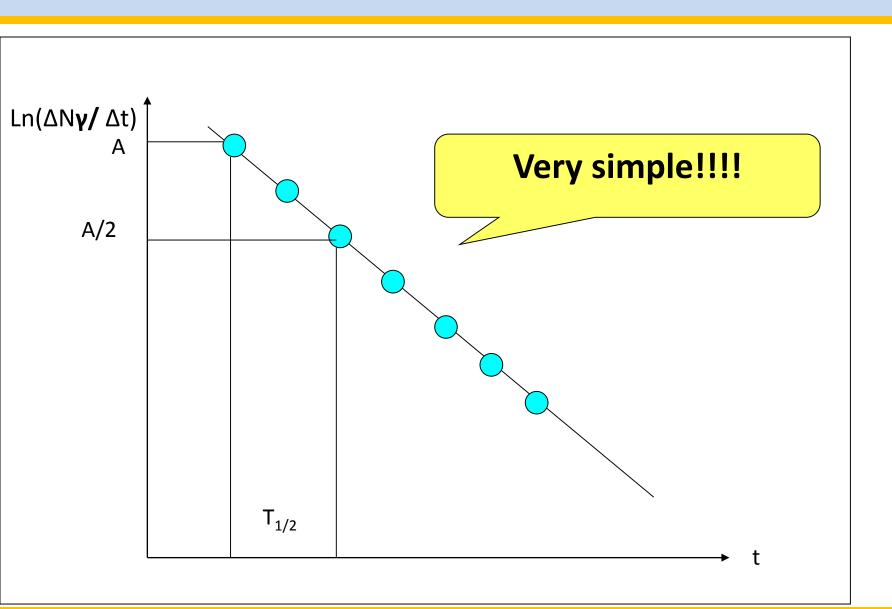
$$\frac{203.65}{1.46 \text{ ns}} I^{tot}(416+619) = 0.78(10) \qquad \text{(net)}$$

Out

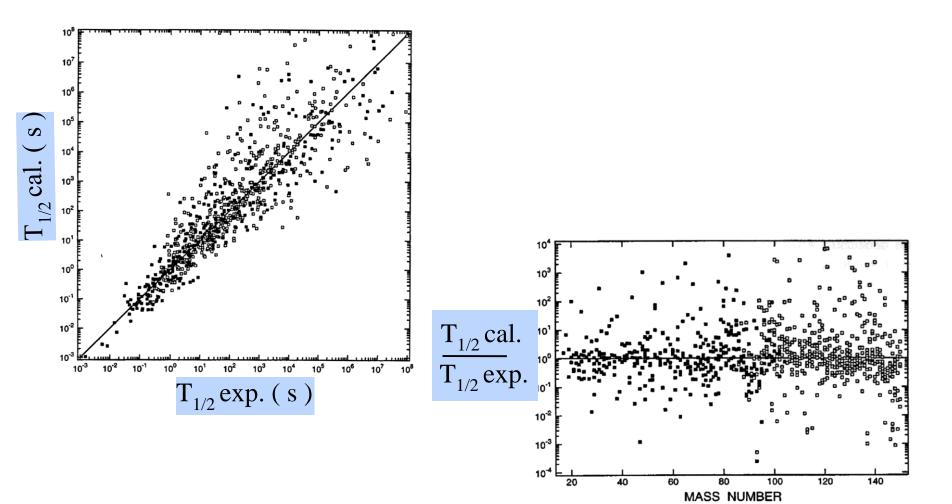

$$\eta = 0.0022 \rightarrow t = 2.056 \times 10^6 [s] \rightarrow \log t = 6.31 \rightarrow \log f = 2.386 \rightarrow \log ft = 8.7$$




Half-life measurement



$$\frac{dN}{dt} = \frac{dN_0}{dt}e^{-\lambda t}$$


$$\lambda = \frac{1}{\tau} = \frac{Ln2}{T_{1/2}}$$

Half-live: First Glance into Nuclear Structure

The isospin formalism:

p and n are the same kind of particles with a different isospin state (T)

The third component T_7 is very clear:

τ Fermi Transition

It can only change the third component of isospin: Only one state called Isobaric Analog State (IAS)

$$B_F = \left| \left\langle \psi_f \mid \sum \tau^{\pm} \mid \psi_i \right\rangle \right|^2$$

Fermi Strength independent of Nuclear Structure

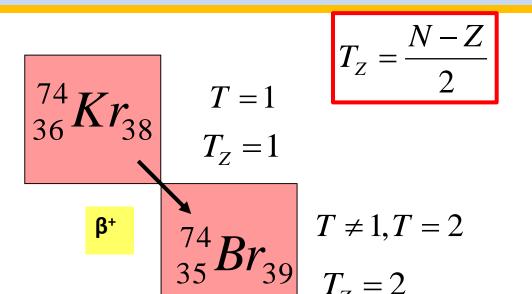
$$B_F^+ - B_F^- = Z - N$$

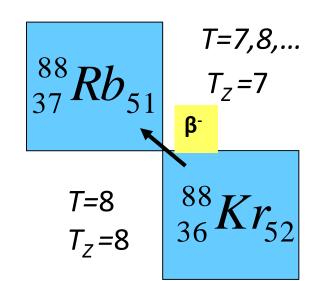
στ Gamow-Teller

Can change the spin and the isospin: Many possible final states

Gamow-Teller strength obeys the Ikeda sum Rule

$$SB_{GT}^- - SB_{GT}^+ = 3(N - Z)$$

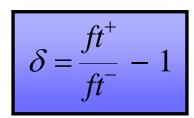

$$B(F) = T(T + 1) - Tz_i Tz_f$$


$$B_{GT} = \left| \left\langle \psi_f \mid \sum \sigma \tau^{\pm} \mid \psi_i \right\rangle \right|^2$$

Fermi & Gamow Teller transitions

In β^+ Fermi, forbidden for N>Z

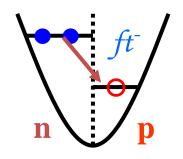
In β⁺ Gamow Teller "allowed"

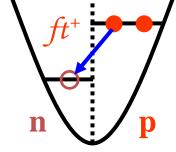

In β - allowed but energetically difficult

In β⁻ Gamow Teller "allowed"

Mirror Asymmetry & Systematics

$$\beta^+$$
: $p \rightarrow n + e^+ + \nu$

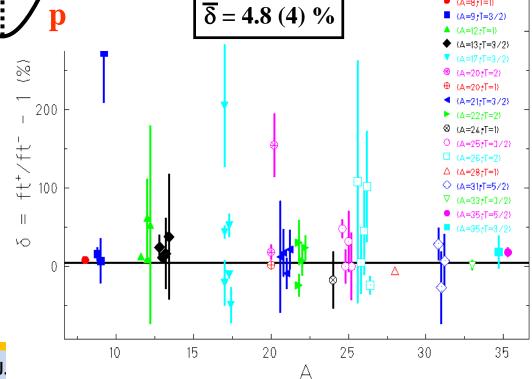

$$\beta^-: n \to p + e^- + \nu$$
 E.C. : $p + e^- \to n + \nu$



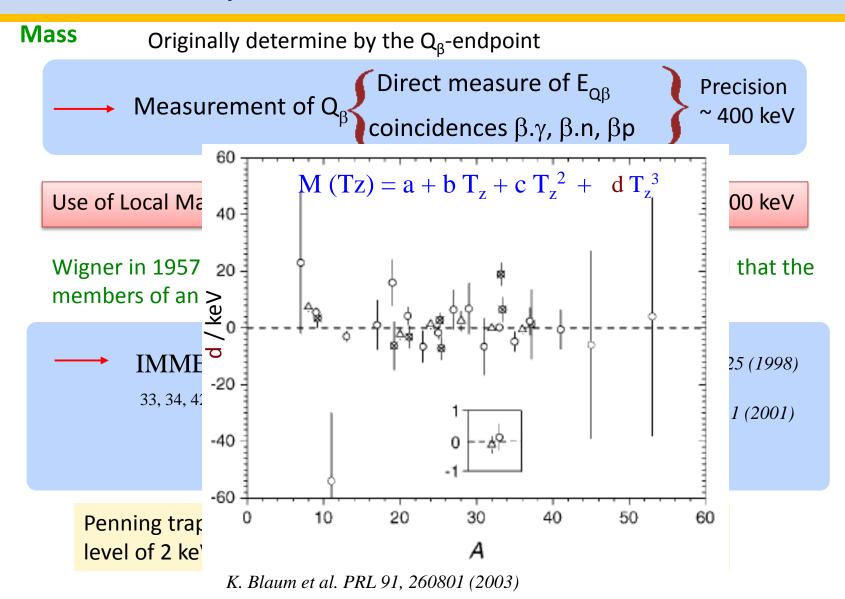
$$\delta = \delta_{\text{nuc}} + \delta_{\text{SCC}}$$

Thomas et al., AIP Conf. Proc 681, p. 235

(I=T:8=A)

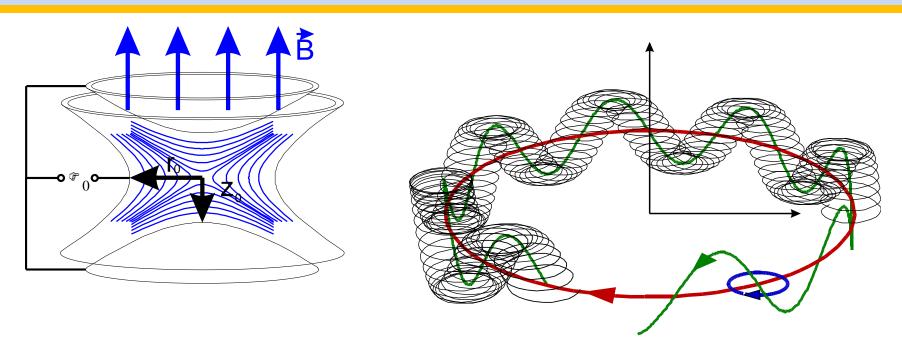


- **→17** couples of nuclei
- →46 mirror transitions


Average asymmetry δ :

11 (1) % in the 1p shell (A<17)

0 (1) % in the (2s,1d) shell (17<A<40)



Beta-decay and Nuclear Structure: Observables

Principles of the Penning trap

A Penning trap can be defined as the superposition of a homogeneous magnetic field and an electrostatic quadrupole field.

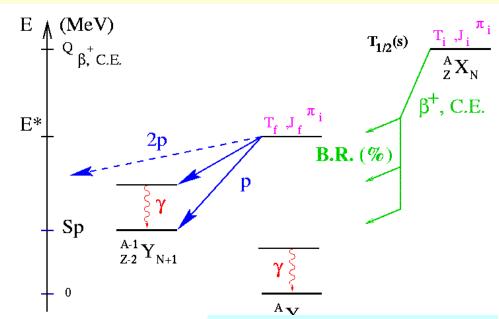
$$\omega_c = \frac{Q}{m}B$$

Precision of 1 keV even for nuclei of 100 ms $T_{1/2}$

Mass measurements at storage rings

"Recent trends in the determination of nuclear masses"

Review: D. Lunney et al, Rev. Mod. Phys. 75, 1021 (2003)



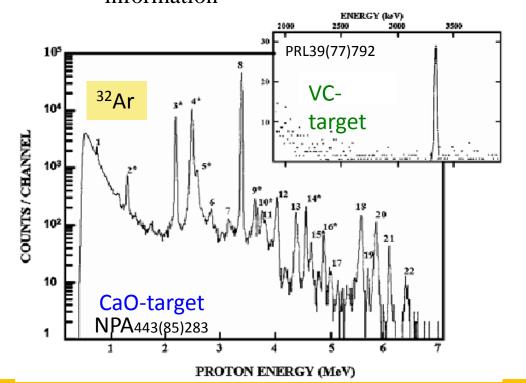
Decay properties of exotic nuclei

- > Global properties
- Short half-lives (~ms)
- $\begin{cases} \textbf{High } Q_{\beta} \text{ values} \\ \textbf{Low } S_{p/n} \text{ values} \end{cases}$
 - β-delayed particle emission
 - > Very Selective probe

- +1916 Rutherford & Wood βα [Philos. Mag. **31** (1916) 379]
- **41963** Barton & Bell identified ²⁵Si as βp

• Reduced transition probability:

ft = f *
$$\frac{T_{1/2}}{B.R.}$$
 = $\frac{K}{G_V^2|\tau|^2 + G_A^2|\sigma\tau|^2}$ = $\frac{C}{B(F) + B(GT)}$


Particle energy spectrum determined by 2 factors
1-intensity of β-decay branches from precursor to the emitter
2-probability of emission

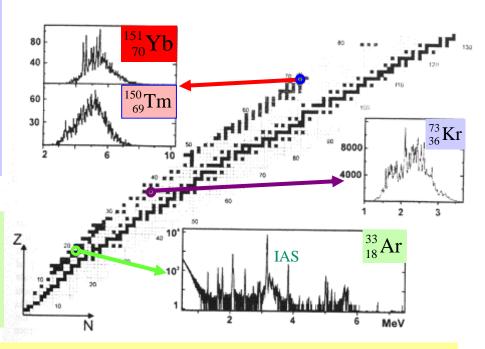
Beta-proton emitters

- ✓ More than 160 precursors identified
- \checkmark For every element up to Z = 73 at least one proton precursor
- \checkmark The βp spectrum depends on the Z and A of the precursor and differs in the different mass region due to differences in level density in the Q-Sp window
- ✓ Properties of βp well understood → large variety of spectroscopic information

- ✓ For light nuclei with $Z \ge 8$, the IAS within the Qec window.
- ✓ From βp energy of IAS \rightarrow Q_{EC}-Sp deduced.
- ✓ Test Isobaric Multiplet Mass eq.

$$M(A,T,T_z) = a + bT_z + cT_z^2 + \delta(dT_z^3 + eT_z^4)$$

- ✓ If strength to IAS \neq B_F \Leftrightarrow Isospin Mixing
- ✓ If IAS in the middle of the Q_{EC} large part of the GTGR available => quenching factor deduced
- ✓ Test of Mirror Symmtry


Beta Delayed Proton Emission (TODAY)

Today more than 134 precursor known

- ♣ Properties well understood
- ♣ This spectroscopic tool is often the only way to identify exotic nuclei
- ♣ Data provide large spectroscopic information
 Level density
 Spin, isospin
 Width & density

β-decay properties

↓ In 33 Ar ⇒ low level density, spectrum marked for proton peaks
Cut off at low energy at the Coulomb barrier IAS (only in precursors with $T_z \le -3/2$)

♣In the rest bellshape spectrum with superimpose peak structure
 ⇒ no individual transition rather cluster of them atributed to Porter-Thomas fluctuations

♣Notice differences

Emitter even-even Q_{EC} and B_p large \Rightarrow populate high excited states \Rightarrow rather smooth spectrum

Emitter even-odd B_p low \Rightarrow proton emitted from low states

⇒ fluctuations more pronunced

³¹Ar @ the dripline: 18p + 13n

Unique Spectroscopic Information

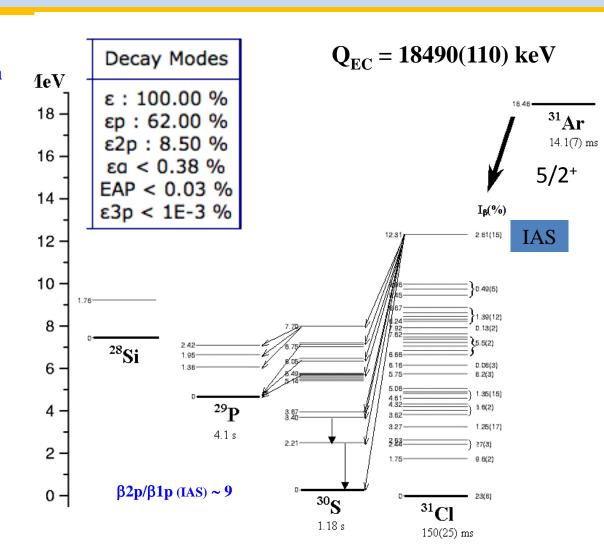
$$Q_{2p} \Rightarrow E_{IAS} = 12322(2)(50) \text{ keV}$$

$$\mathbf{Q}_{EC} = \mathbf{E}_{IAS} + \Delta \mathbf{E}\mathbf{c} - \Delta \mathbf{n}\mathbf{p}$$

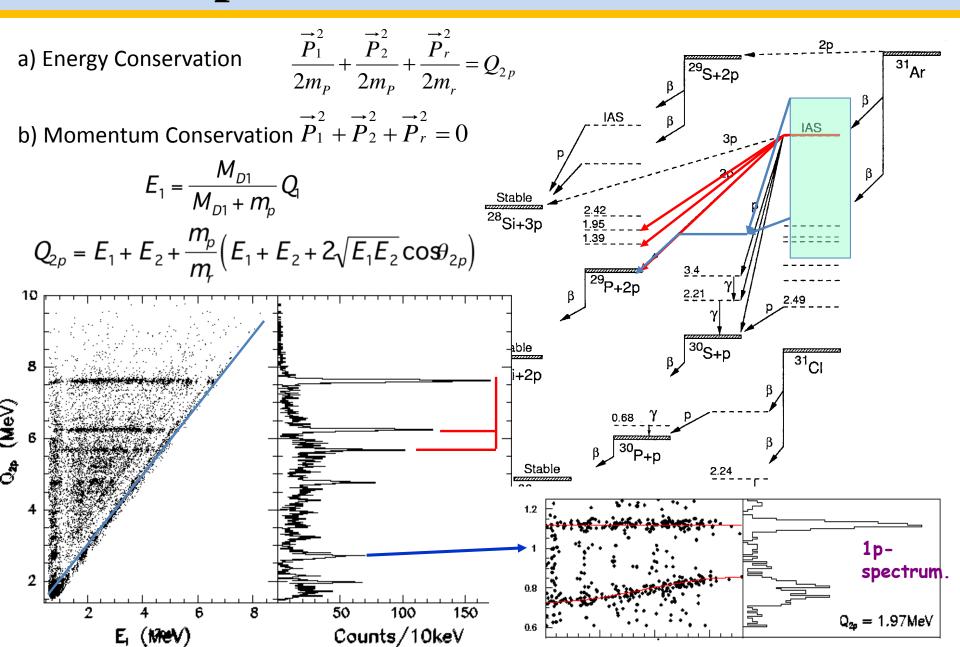
 $\Delta Ec = 7045 \text{ keV}$

$$Q_{EC} = 18490(110) \text{ keV}$$

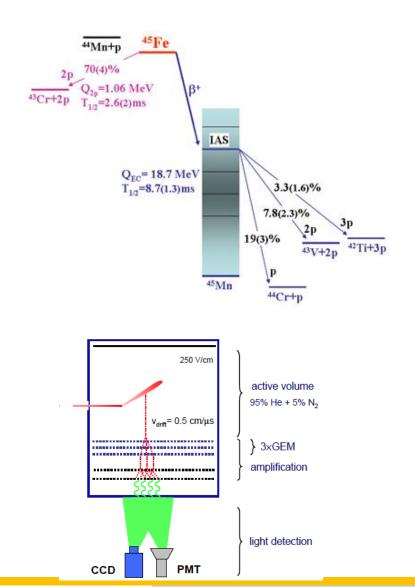
$$f(E_{\beta IAS})t_{IAS} = 6145(4) \text{ s / } [B(F) + B(GT)]$$

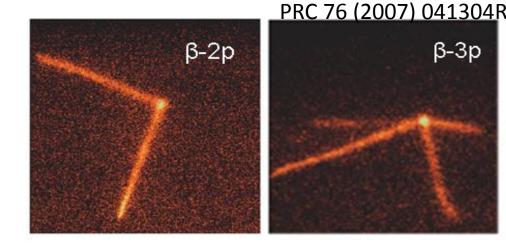

b.r.(IAS) =
$$T_{1/2} / t_{IAS}$$

$$B(F) = [T(T+1)-T_{zi}T_{zf}]\delta_{if} = 5$$


Expected b.r. (IAS) = 4.35(31)%

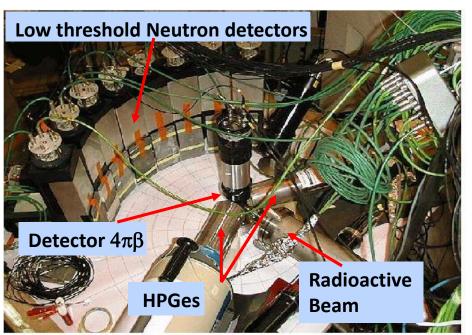
Experimentally: b.r. (IAS) =

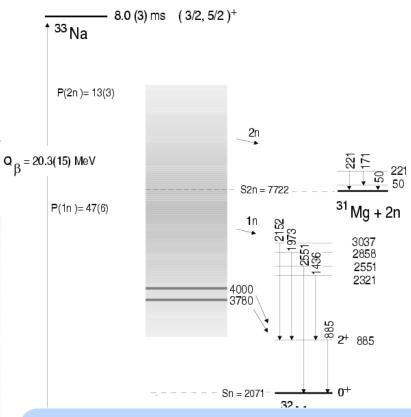

4.25(30) %


2p emission from ³¹Ar IAS

β-delayed 3p-emitters

Decay mode search for in ³¹Ar where the Q3p is around 4.8 MeV




Decay Scheme → Structure Information (N= 20)

³³ Na

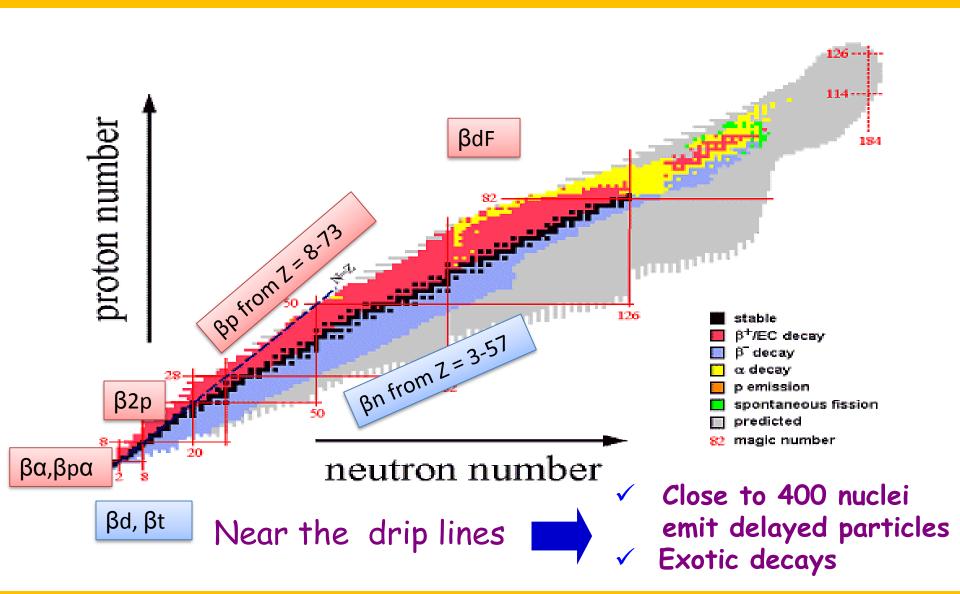
ISOLDE

fragmentation U (46g/cm 2) 2000° 1,4 GeV protons 3 10 13 / pulse (1,2s) 33 Na 2 at / s

 33 Na $^{1/2} = 8.0 (3)$ ms

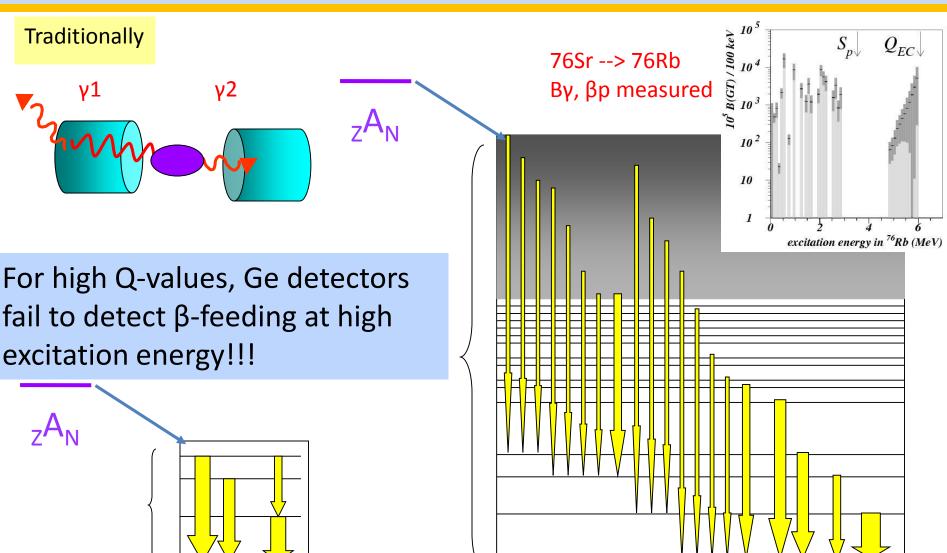
Detailed Level Scheme

inversion of $3/2^+$ $7/2^-$ orbits in 33 Mg

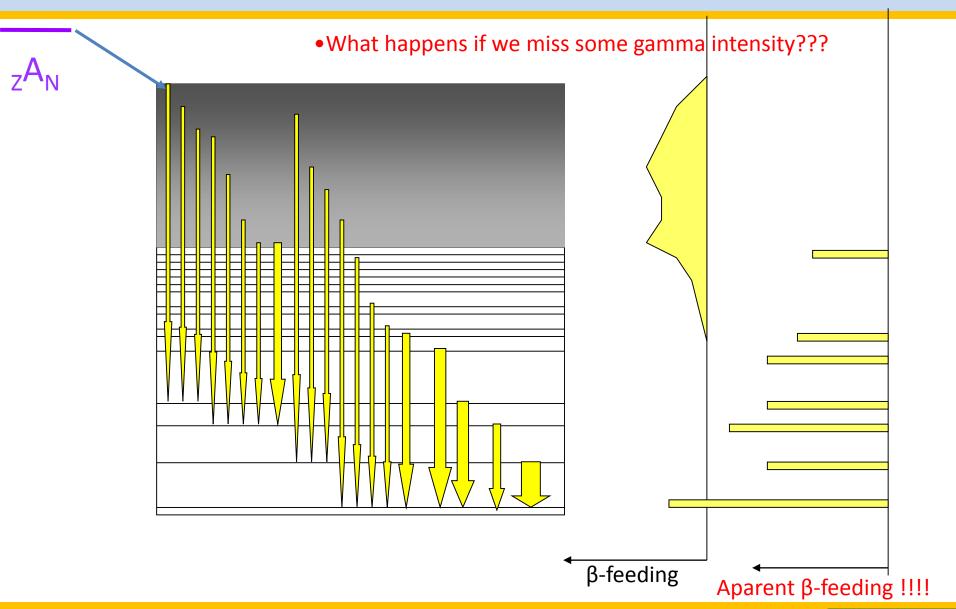

exp.: coinc. β neutrons β . γ .n

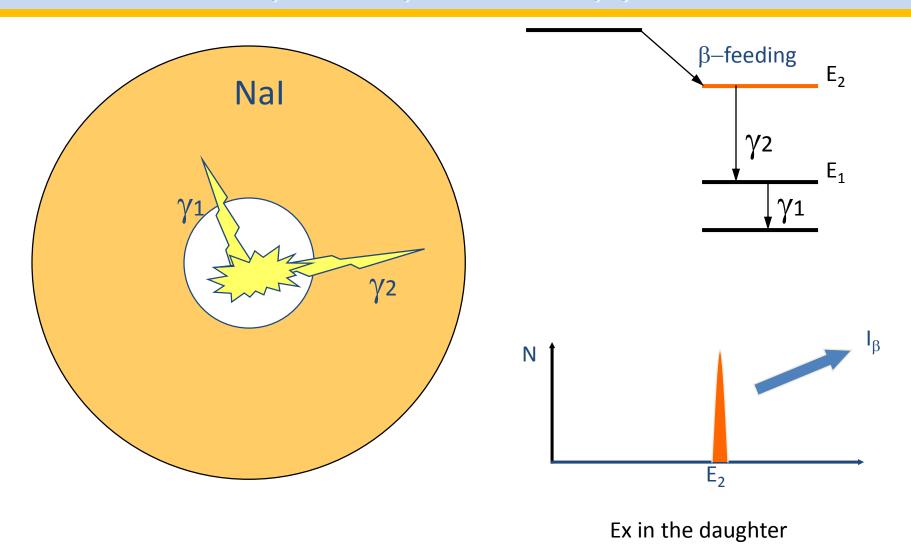
CSIC

Maria J.Ga Bo


M. Langevin et al NP A414 151 (1984) S. Nummela et al PRC64 054313 (2001)

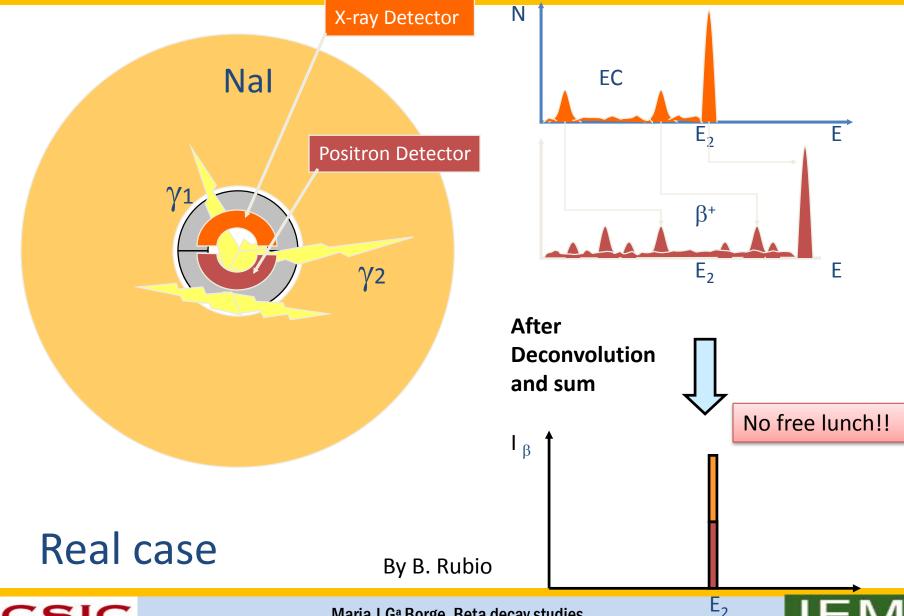
Nuclear Landscape


Beta-decay Limitations: beta feeding

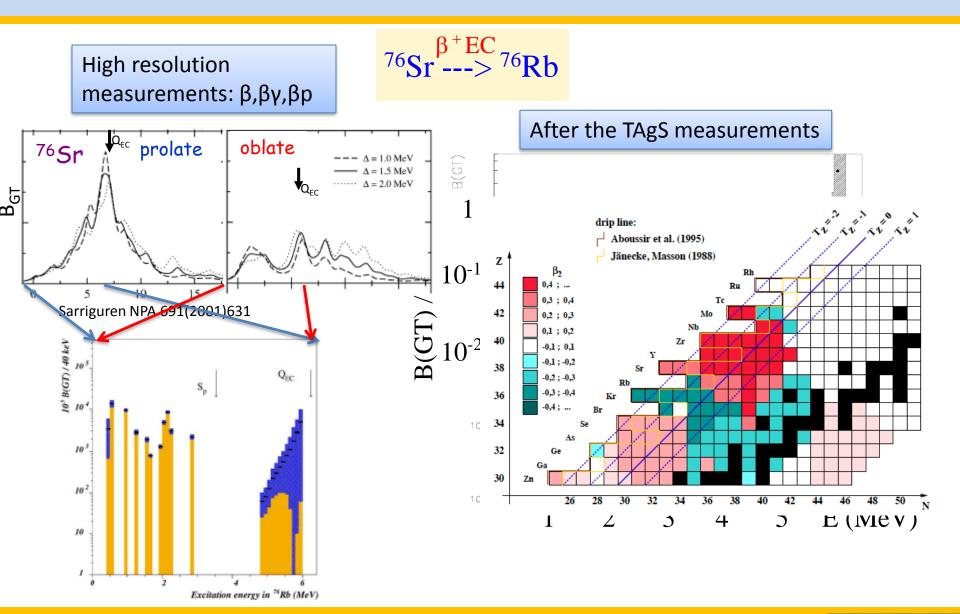


- •We use Ge detectors to construct the decay scheme
 - •From the γ -balance we extract the β –feeding

Total Absorption spectroscopy

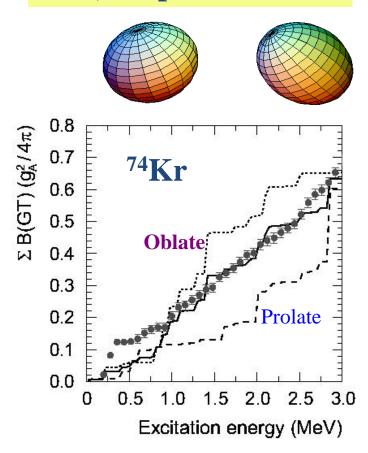


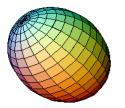
Ideal case

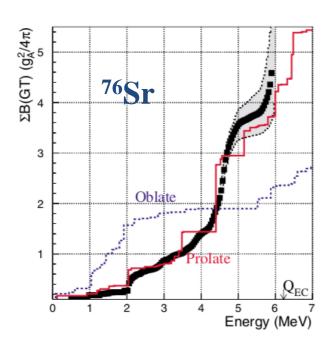

By B. Rubio

Total absorption spectroscopy

Deformation in the region N ~Z with 70 < A < 80



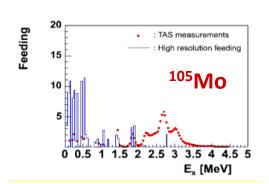

Mass ~70: Strong Deformation & Shape Coexistence

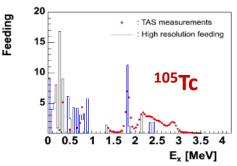

⁷⁴Kr, shape admixture

Poirier et al., PRC 69 (2004) 034307

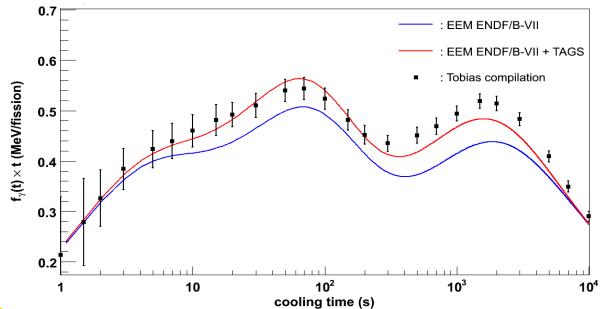
⁷⁶Sr clearly prolate

Nácher et al., PRL 92 (2004) 232501



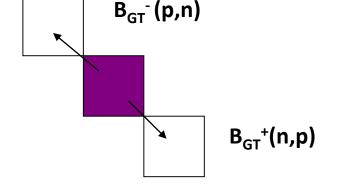


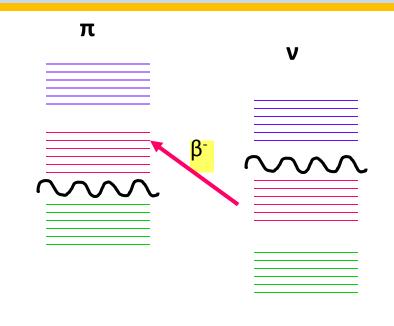
New results on Reactor Decay Heat discrepancies


- Experiment at IGISOL-JYFL (Jyvaskyla), A. Algora et al. Phys. Rev. Lett 105(2010) 202501
- Total Absorption Gamma-ray Spectroscopy (TAGS) technique: IFIC & CIEMAT
- First use of a Penning Trap with TAGS to purify samples

• The new data on the decay of Mo, Tc and Nb isotopes helps to solve a large fraction of the discrepancy between calculated and measured decay heat

Charge exchange reactions




Beta decay and Charge Exchange are two processes governed by the same $\sigma\tau$ (τ) operator

The Ikeda sum rule:

Independent

$$S^--S^+=B_{GT}^--B_{GT}^+=3(N-Z)$$

In principle β^- decay is more interesting because most of the nuclei have more neutrons than protons, and then most of the Ikeda sum rule is in the β^- side.

The "experimental B_{GT}" is obtained from the reaction cross section, with all the problems and ambiguities associated (back ground, L transfer, target, current normalisation, detector efficiency....)

Beta decay: Advantages & disadvantages

- Mechanism under control
- No background ambiguities
- No normalisation ambiguities
- • β + or β given by nature, β almost always bigger than β +
- $\bullet Q_{\beta}$ given by nature limiting the states that can be populated
- •The further from stability the bigger the Q_{β} window
- •At some moment β delayed protons and β delayed neutrons set in

Charge exchange reactions: (p,n), (³He,t)

Decay: Excitation energy range limited → Q-window limitation

(p,n) reaction at intermediate energies (E = 100 - 500) MeV/u "proportionality " of B(GT) and cross section at 0°

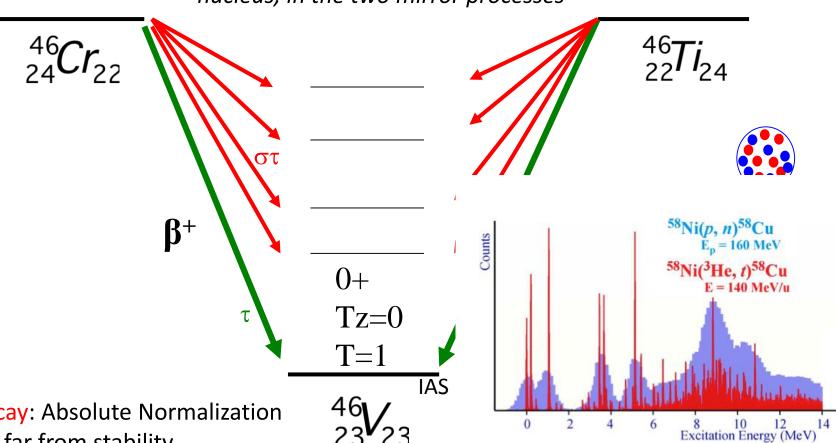
$$\sigma$$
 (0°) = KN σ t I J σ t (0°) I² B(GT)

Breakthrough againts "Q-window-limitation" But poor resolution (E = 200-400 keV)

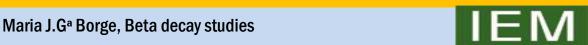
(3He,t) reactions at intermediate energies (E = 130-150 MeV/u)

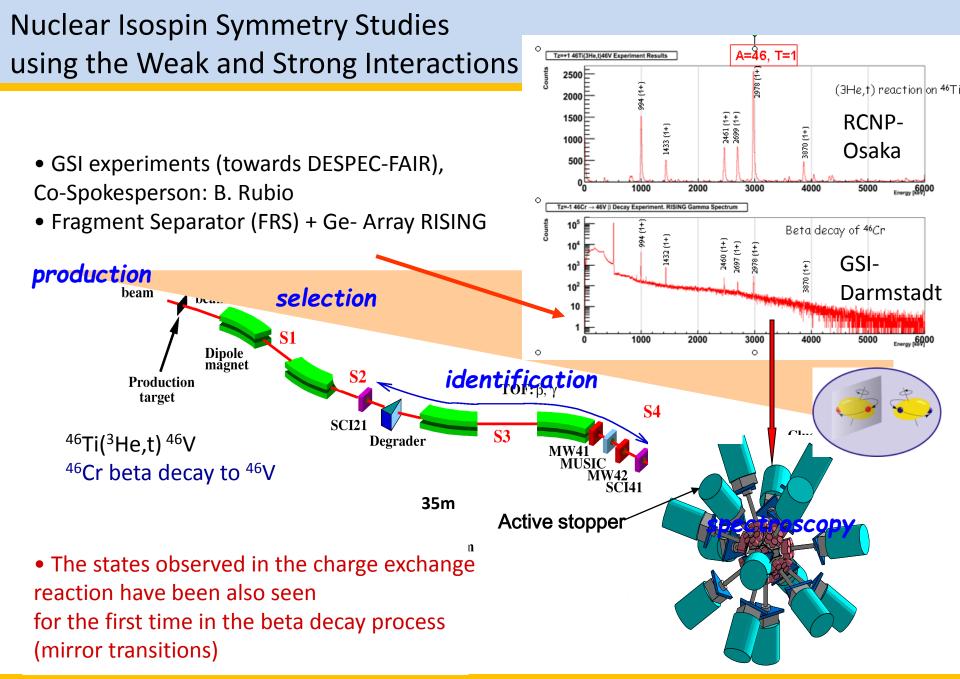
"high resolution" (E < 50 keV)

Magnetic spectrometer, matching technique

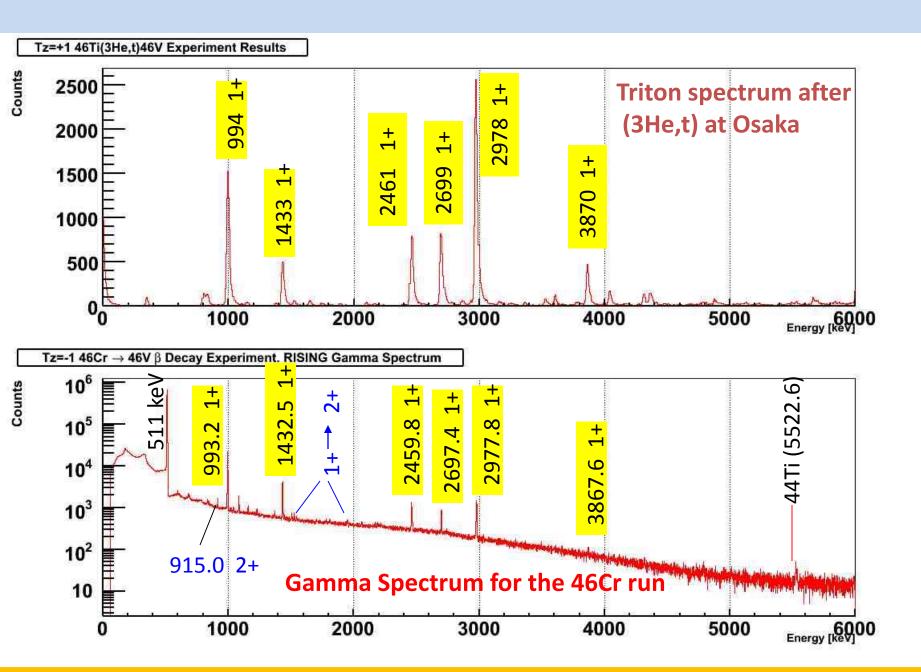

Good proporcionality (B(GT) > 0.03, observed)

- → Breakthrough against "Energy resolution Limitations"
- → Reliable B(GT) values for individual transitions


Tz=-1T=1


If isospin symmetry holds, mirror nuclei should populate the same states with the same probability, in the daughter nucleus, in the two mirror processes

Tz=+1T=1


Beta Decay: Absolute Normalization of B(GT) far from stability.

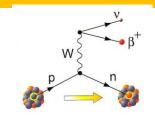
Double- β Decay

Of interest:

Particle Physics Nuclear Physics

 $\beta\beta2\nu$: Predicted by the Standard Model

$$(Z, A) \longrightarrow (Z+2, A) + 2e^{-} + 2\bar{v}$$


S.M. (E. Caurier et al. PRL 77, 1954 1996) $T_{1/2 \ calc.}$ ~ 0.3 -ORPA (I Frage of al DDC 27 721 1088) ^{76}As **Future in Gran Sasso** $Q_R = 2.96 \text{ MeV}$ GERDA (76Ge, 7.6 %) $Q_{FC} = 0.92 \text{ MeV}$ ⁷⁶Ge ⁷⁶Se CUORE (130Te, 34.1%) $Q_{B} = 2.98 \text{ MeV}$ $Q_{FC} = 0.45 \text{ MeV}$ 130_I ¹³⁰Te ¹³⁰Xe **Super Nemo** NEXT(134,136 Xe(20%) TPC, $\beta\beta2\nu$ not yet measured)

Superallowed Fermi transitions

For pure Fermi Transition 0+ → 0+

$$f(Z, E_b) t = K / |M_{if}|^2 = \frac{K}{G_v^2 |M_F|^2}$$

$$B(F) = I M_F I^2 = T (T + 1) - Tz_i Tz_f$$

Hypothesis of the « Conserved Vector Current »

$$f\left(Z,E_{b}\right)\left(1+\delta_{R}\right)t\left(1-\delta_{C}\right)=\frac{K}{G_{v}^{2}\left(1+\Delta_{R}\right)|M_{F}|^{2}} \quad \begin{array}{c} \textit{Identical for all transitions} \\ \textit{estimation of } G_{V} \end{array}$$

corrections

 $\Delta_{\mathbf{R}}$ (2,5 %)

Independent of nucleus function of model

radiatives

 $\delta_{R} (1,5 \%)$

Exchange of photons between e⁺ and nucleus Depend of the nucleus

Isospin impurities $\delta_{\rm C}$ (0, 2 – 4 %)

For states with isospin mixing

A. Sirlin et al., NP B71, 29 (1974)

D.H. Wilkinson et al., NIM A 335, 172 (1993)

W.E. Ormand et al., PRC 52 2455 (1995)

Beta-decay and fundamental interactions

F
$$t = f(Z, E_b) t (1 + \delta_R) (1 - \delta_C)$$

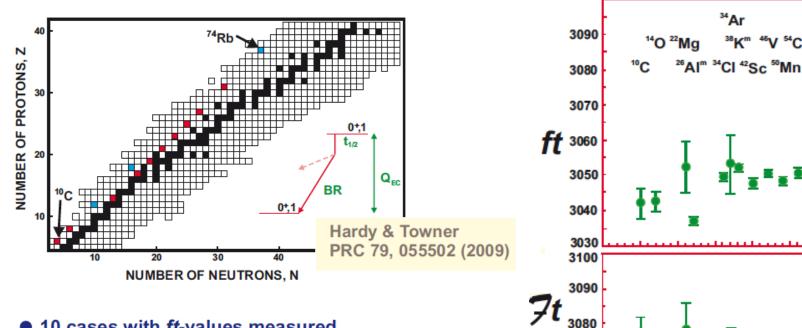
F $t = \frac{K}{2 G_v^{'2}}$

Tz = -1 \Rightarrow B(F) = 1.(1+1)-(-1)0) = 2

β-decay \Rightarrow access to the dominant term V_{ud} of the Cabibbo Kobayashi Maskawa (CKM) Matrix

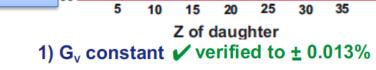
$$\left\{ \begin{array}{l} d' \\ s' \\ b' \end{array} \right\} = \left\{ \begin{array}{l} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right\} \left\{ \begin{array}{l} d \\ s \\ b \end{array} \right\}$$

$$G_{v}^{'2} / G_{\mu}^{'2} = V_{ud}^{2} (1 + \Delta_{R})$$
 μ -decay


$$V_{ud}^2 | + |V_{us}^2| + |V_{ub}^2| = 1?$$

Unitarity of the C K M Matrix ?

D.H. Wilkinson NIM A 488, 654 (2002



World data for $0^+ \rightarrow 0^+$ transitions, 2009

- 10 cases with ft-values measured to ~0.1% precision; 3 more cases with <0.3% precision.
- ~150 individual measurements with compatible precision

$$\mathcal{F}t = ft (1 + \delta_R')[1 - (\delta_C - \delta_{NS})] = \frac{K}{2G_V^2 (1 + \Delta_R)}$$

2)
$$|V_{ud}| = G_V/G_{\mu} = 0.97425 \pm 0.00022$$

3) CKM unitarity established <a>

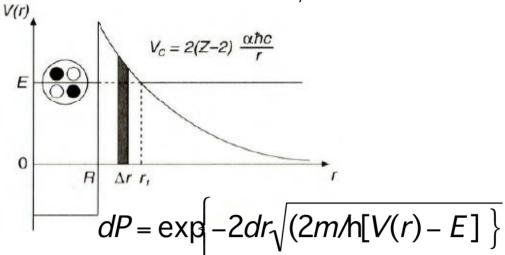
3070

 $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.99990 \pm 0.00060$

 $Ft = 3072.08 \pm 0.79 s$

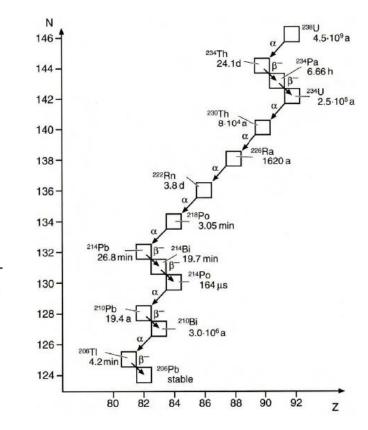
Summary

- The study of beta-decay is a powerful tool for nuclear structure.
- Very far from stability new exotic decay modes appear
- Beta-delayed particles decay is a consecuence of the high Q_{β} -values and low binding energies for the last nucleon and has paved the way to the discovery of proton and two-proton radiactivity.
- I hope I have convience you of the richness of nuclear structure information one can extract from these studies.


Alpha decay

Spontaneus α -decay ($S_{\alpha} = 0$) correspond to

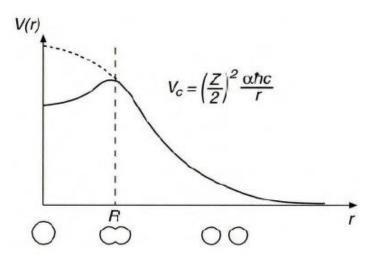
$$_{z}^{A}X_{N} \rightarrow _{z-2}^{A-4}X_{N-2} + \alpha$$

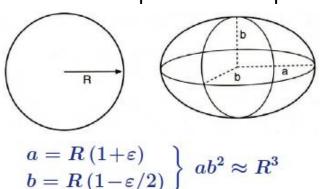

$$BE(_{Z}^{A}X_{N}) - [BE(_{Z-2}^{A-4}X_{N-2}) + BE(_{Z-2}^{A}He)] = 0$$

 $\lambda = \mathsf{FP}$ $\lambda = \mathsf{FP}$ $\mathsf{F} = \mathsf{Prob Transmission}$ $\mathsf{F} = \mathsf{frecuency to reach the barrier}$

 $P = \exp(-2G)$ and; G = Gamow factor

$$G = \sqrt{\frac{2m}{h^2}} \int_{R}^{r_1} [V(r) - E]^{1/2} dr = \sqrt{\frac{2m}{h^2 E}} - \frac{zZ'e^2}{4\pi\varepsilon_0} [\arccos x - \sqrt{x(1-x)}]$$


 $x = R/r = E / V(R) \rightarrow G \propto Z/E^{1/2} \rightarrow \lambda \propto v_o/2R \exp(-2G)$ $\tau \approx \text{ from ns to } 10^{17} \text{ years!}$



Nuclear fission

Potential during Spontaneous Fission

Deformed Sphere into ellipsoid

$$E_s = a_s A^{2/3} \left[1 + rac{2}{5} \varepsilon^2 + \cdots
ight]$$
 $E_c = a_c rac{Z^2}{A^{1/3}} \left[1 - rac{1}{5} \varepsilon^2 + \cdots
ight]$

 \triangleright small deformation ε changes E by :

$$\Delta E \; pprox \; rac{arepsilon^2}{5} \left[2 a_s \, A^{2/3} - a_c \, Z^2 A^{-1/3}
ight]$$

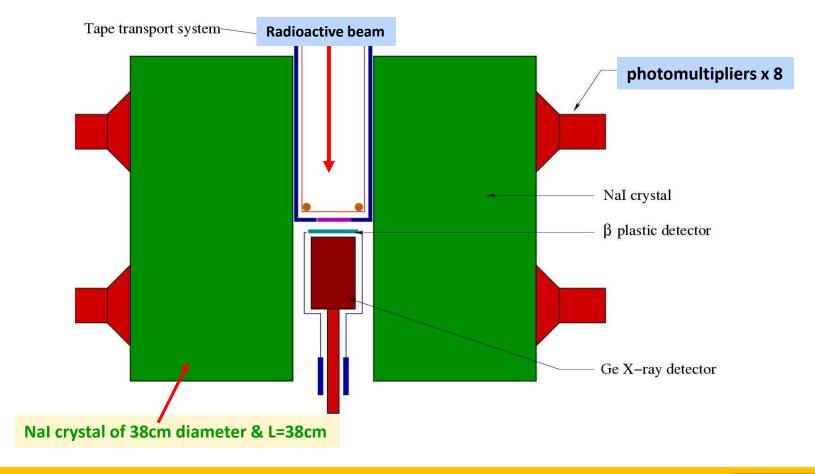
▷ fission barrier disappears for :

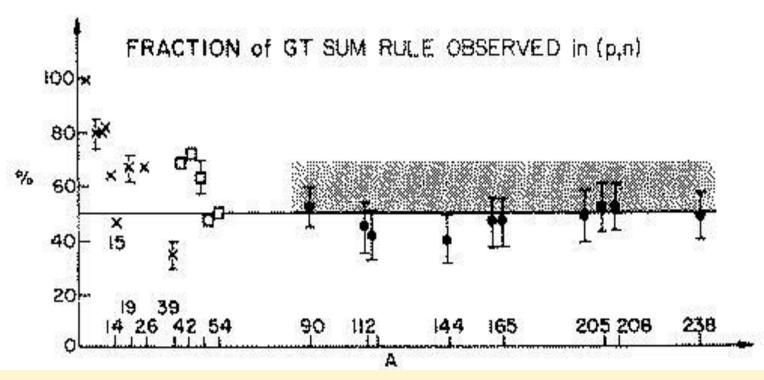
$$rac{Z^2}{A} \gtrsim rac{2a_s}{a_c} pprox 48$$

 \rightsquigarrow about Z > 114 and $A > 270 \dots$

Induced Fission:

 $Z \approx 92$: barrier ~ 6 MeV

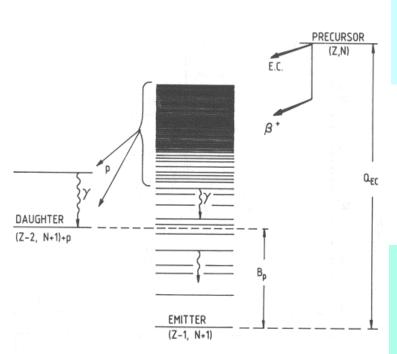

N capture by odd N Nuclei \rightarrow δ -term + δ ²³⁵U (not ²³⁸U) , ²³³Th, ²³⁹Pu....


Total absorption Spectrometer (TAS) @ ISOLDE

Aim to measure the total β Strength

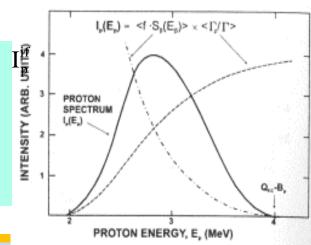
Quenching of the GT Strength

Two possible explanations:


- •The Δ-Resonance at 1232 MeV (internal degrees of freedom of nucleon)
- Higher order configuration mixing:
- •Experiments in ⁹⁰Zr(p,n) and ⁹⁰Zr(n,p) proved that by exploring energies well beyond the GT-resonance they recover 95 % of Sum Rule

Beta Delayed Proton Emission

- **Barton &Bell** in McGill identify ²⁵Si as first proton precursor thanks to the used of Sisurface barrier detectors
 - **4** Decay Scheme of β-delayed proton precursor



- ♣ Particle energy spectrum determined by 2 factors
 1-intensity of β-decay branches from precursor to the emitter
 - 2-probability of emission by proton rather gamma

$$I_p^{if} = I_\beta^i \ \frac{\Gamma_p^{if}}{\Gamma^{if}}$$

Formula valid for light precursor when individual transitition are resolved

♣ For heavier precursors, is statistically averaged over an energy range with Bell shape (neglecting nuclear structure)

The Building Blocks

Electron

- ► In 1897, Thomson produces beams of particles in discharge tubes :
 - \triangleright by deflecting them : (v, M/Q)
 - → a universal constituent of matter!
 - \triangleright then measures $Q:M\!=\!511\;\mathrm{keV}/c^2$

Proton

- ▶ In 1911, Rutherford finds a central Coulomb field in the atom caused by a massive, positively charged nucleus ...
- ▶ Bombarding nuclei with α 's :

$$^{14}N + ^{4}He \rightarrow ^{17}O + p$$

he observes positively charged particles with a very long range!

- → Hydrogen nuclei ?
- → elementary constituent of nuclei!

Neutron

- ► A "neutral radiation" had been observed but not understood ...
- ▶ In 1932, Chadwick irradiates Beryllium with α 's from Polonium source :
 - > radiation collides with several nuclei that recoil in ionisation chamber :
 - → mass similar to that of the proton
 - → new constituent, the "neutron"!

Binding Energy

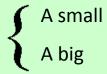
- ▶ Once the constituents known, the forces holding them could be investigated ...
 - ▷ stronger than atomic forces :
 - \rightsquigarrow need energetic α 's to break up

E. Rutherfo

Semi Empirical Mass Formula

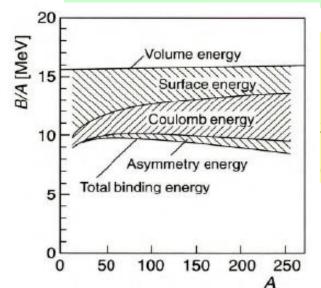
The variation of BE with A and Z is described by the Liquid Drop Model with some Shell Model correction.

•Volume saturation of forces


BE
$$\propto a_V A$$
 (not to A(A-1) $\approx A^2$)

•Surface less binding at surface (few neighbors) $\propto a_S A^{1/3}$ as the Nuclear surface $\propto 4\pi R^2$

•Coulomb effect


$$\propto a_c Z(Z-1)A^{-1/3}$$

$$\Rightarrow$$
 BE(A,Z) = $a_V A - a_S A^{1/3} - a_V Z(Z-1) A^{-1/3}$

→ surface correction dominate

→ Coulomb correction dominate

Deformed nuclei both surface and Coulomb corrections change:

Ellipsoidal deformation at constant volume: $a = R(1 + \varepsilon)$

Surface part: = $a_S A^{2/3} (1 + 2/5 \epsilon^2)$ b = R / (sqrt(1+ ϵ)

Coulomb part: = $a_C Z(Z-1)A^{-1/3} (1 - 1/5 \varepsilon^2)$

 $\Delta E = \Delta E_S + \Delta E_C > 0 \Rightarrow$ stable spherical shape $Z^2/A < 49$

Shell Model Corrections

Symmetry energy

Pauli principle prevents occupation of certain orbitals

Favours
$$Z= N = A/Z \rightarrow parities$$

$$\begin{cases} N = A/Z + v \\ N = A/Z - v \end{cases}$$

The average energy between adjacent orbitals is Δ ;

$$\rightarrow$$
 $\Delta E_{bind} = v(\Delta v/2)$; where $v = (N-Z)/2$

$$a_v = 15.85 \text{ MeV}$$

$$a_c = 0.71 \text{ MeV}$$

$$a_{\Delta} = 23.21 \text{ MeV}$$

$$a_p = 12 \text{ MeV}$$

As the potential depth Uo describing the nuclear well is approximately the same from ¹⁶O to ²⁰⁸Pb (ΔU_0 < 10 %). Average energy spacing between orbitals is $\Delta \infty 1/A$ $\Delta E_{hind} = 1/8(N-Z)^2 \Delta = 1/8(A-2Z)^2 \Delta$

Pairing energy

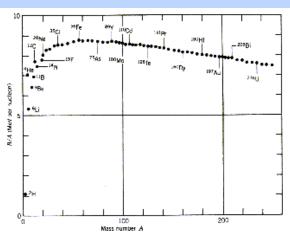
Nucleus preferentially form pairs under influence of the short range nucleon-nucleon atractive force

$$\Delta E_{pair} \begin{cases} ^{+ \delta (e-e)} \\ 0 (e-0) \\ -\delta (0-0) \end{cases} \delta \approx a_{p} A^{-1/2}$$

$$\delta \approx a_p A^{-1/2}$$

Bethe-Weizsäcker mass equation (1935-1936)

BE(A,Z) =
$$a_vA - a_sA^{2/3} - a_cZ(Z-1)A^{-1/3} - a_A(A-2Z)^2/A + a_pA^{-1/2}$$

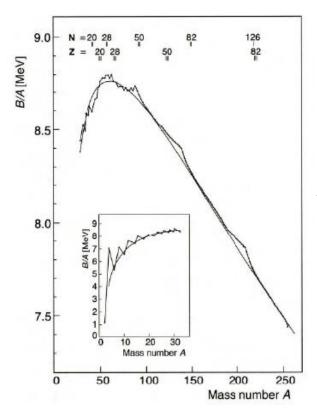


Binding Energy (I)

- Strong interaction acts at very short distance.
- Naively one would expect A(A-1)/2 bonds and each E_{bond} ~constant thus giving: $BE(^{A}_{7}X_{N})/A \propto E_{2}$ (A-1) / 2
- Experimentally $BE(^{A}_{Z}X_{N})/A \propto 8$ MeV over the full region indicating
 - Nuclear and charge independent
 - Saturation of Nuclear Forces: $\rho_o \approx 0.17 \text{ N/fm}^3$
 - The less bound nucleon has an energy of ~ 8 MeV independent of the number of nucleons
 - → The independent particle picture holds : nucleons move in an average potential
- BE/A as function of A has its maximum around $A = 56-60 (^{62}Ni)$
 - → Source of energy production

Fission of heavy nuclei

Fusion of light nuclei

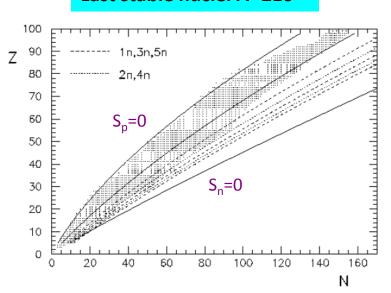


Binding Energy (II)

Under assumption of saturation and charge independence. Each nucleon occupies an almost equal size within the nucleus **the elementary radius** r_0

$$V = \frac{4}{3}\pi r_0^3 A \begin{cases} r_0 = 1.2 \text{ fm for charge radius} \\ r_0 = 1.4 \text{ fm for matter radius} \end{cases}$$

$$\rho(r) = \frac{\rho_0}{1 + e^{(r - R_0)/a}} \begin{cases} \rho_0 = \text{central density} \\ R_0 = \text{Radius at half density} \\ a = \text{diffusenes s of nuclear surface} \end{cases}$$


Nuclear density is independent of A and 10¹⁴ times normal density

The liquid drop model was first to describe the nuclear properties.

- saturation of nuclear forces gives BE/A = constant
- -Nucleus presents low compressibility and well defined surface.

Stability Against Radioactive Decay

Last stable nuclei A≈210

Spontaneus α -decay ($S_{\alpha} = 0$) correspond to

$$BE(_{Z}^{A}X_{N}) - [BE(_{Z-2}^{A-4}X_{N-2}) + BE(_{He}^{4})] = 0$$

The half-lives becomes short in the actinide region $A \approx 210$

The conditions $S_n = 0$ and $S_p = 0$ establishes the drip-lines

The energy release in nuclear fission:

$$E_{fission} = M^{1} {A \choose Z} X_{N} c^{2} - 2M' {A/2 \choose Z/2} X_{N/2} c^{2}$$

Using a simplified mass eq. where $Z(Z-1) \approx Z^2$ and neglecting the pairing corrections δ :

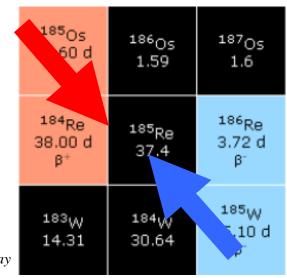
$$E_{fission} = [-5.12 A^{2/3} + 0.28 Z^2 A^{-1/3}] c^2$$

 $E_{fission} > 0$ for A \approx 90 and $E_{fission} = 185$ MeV for ²³⁸U.

The fission products, neutron rich nuclei, mainly β \Rightarrow good source of electron anti-neutrinos.

Definition

Beta Decay: universal term for all weak-interaction transitions between two neighboring isobars


Takes place is 3 different forms β-, β+ & EC (capture of an atomic electron)

$$\beta^{+}: p \rightarrow n + e^{+} + v$$

$${}_{Z}^{A} X_{N} \rightarrow {}_{Z-1}^{A} X^{*}_{N+1} + e^{+} + v_{e}$$

$$EC: p + e^{-} \rightarrow n + v$$

$${}_{Z}^{A}X_{N} + e^{-} \rightarrow {}_{Z-1}^{A}X_{N+1}^{*} + \nu_{e} + X_{ray}$$

$$\beta^-: n \rightarrow p + e^- + \tilde{v}$$

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z+1}^{A}X^{*}_{N-1} + e^{-} + \overline{\nu}_{e}$$

a nucleon inside the nucleus is transformed into another

Beta-decay lifetime

$$t \equiv T_{1/2}^{\beta_i} = \frac{T_{1/2}^{\exp}}{P_{\beta_i}}$$
 partial half-life of a given $\beta^-(\beta^+,EC)$ decay branch (i)

Assuming
$$E(7,W) = 1 & 0 >> m c$$

$$\frac{\ln 2}{T_{1/2}^{n}} = \frac{g^{2}}{2\pi^{3}} \int_{1}^{W} p_{e} W_{e} (W_{0} - W_{e})^{2} F(Z, W_{e}) C_{n} dW_{e}$$

$$\begin{cases}
\text{Assuming} \\
\text{F (Z,W)= 1 & Q >> m_{e} C^{2}} \\
\text{f=W}_{o}^{5} / 30 \text{ (β^{+})} \\
\text{f=(W}_{o} + 1)^{5} / 30 \text{ (β^{-})}
\end{cases}$$

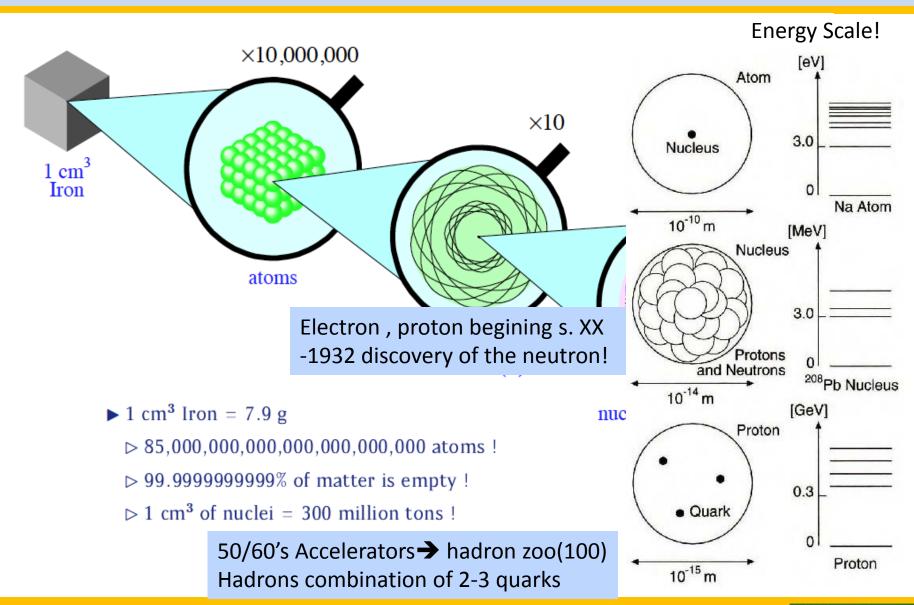
g – weak interaction coupling constant

 p_{ρ} – momentum of the β particle

 W_e – total energy of the β particle

 W_0 – maximum energy of the β particle

 $F(Z,W_{\rho})$ – Fermi function – distortion of the β particle wave function by the nuclear charge


 C_n – shape factor $\neq 1$ for forbidden transitions = C(p,q)

Z – atomic number

The structure of the Matter

Useful empirical rules

The fifth power beta decay rule:

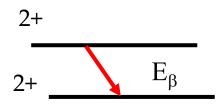
The speed of a β transition increases approximately in proportion to the fifth power of the total transition energy (if other things are being equal, of course!)

$$\frac{1}{I_{\rm f}} \frac{1}{\varepsilon} = \frac{1}{\tau} \propto \left[\left(M(Z) - M(Z \pm 1) \right) c^2 \right]^5$$

$$F(Z,W) = 1 \& Q >> m_e c^2$$

- ☐ Depends on spin and parity changes between the initial and final state
- □ Additional hindrance due to nuclear structure effects isospin, "l-forbidden", "K-forbidden", etc.

Classification of allowed \(\beta \)-transitions


$$(p_i p_f = +1)$$

Fermi

$$\Delta I = |I_i - I_f| \equiv 0$$

$$L_{\beta} = 0 \quad S_{\beta} = 0 \downarrow \uparrow$$

Gamow-Teller

$$\Delta I = |I_i - I_f| \equiv 1$$

$$L_{\beta} = 0 \quad S_{\beta} = 1 \uparrow \uparrow or \downarrow \downarrow$$

mixed Fermi & Gamow-Teller

$$\Delta I = \left| I_i - I_f \right| \equiv 0 \qquad I_i \neq 0$$

Classification of β-transitions

Type of transition	Order of forbiddenness	ΔJ	$\pi_{ m i}\pi_{ m f}$
Allowed		0,+1	+1
	1	∓2	-1
Forbidden unique	2	∓3	+1
	3	∓ 4	-1
	4	∓ 5	+1
		•	•
	1	0, ∓1	-1
Forbidden	2	∓2	+1
	3	∓3	-1
	4	∓ 4	+1
			•

The order of forbideness is given by the angular momentum carried by the electron and neutrino.

Logft Values

$$\log ft = \log f + \log t$$

coming from calculations

For allowed trans: Wilkinson & Macefield,

NPA232 (1974) 58

N.B. Gove and M. Martin, Nuclear Data Tables 10 (1971) 205

Decay Mode	Туре	$\Delta I (\pi_i \pi_f)$	$\log f$
β– EC + β+	allowed	0, +1 (+)	$\log f_0^- \\ \log (f_0^{EC} + f_0^+)$
β– EC + β+	1 st -forb unique	∓2 (-)	$\log f_0^- + \log(f_1^-/f_0^-)$ $\log[(f_1^{EC} + f_1^+)/(f_0^{EC} + f_0^+)]$

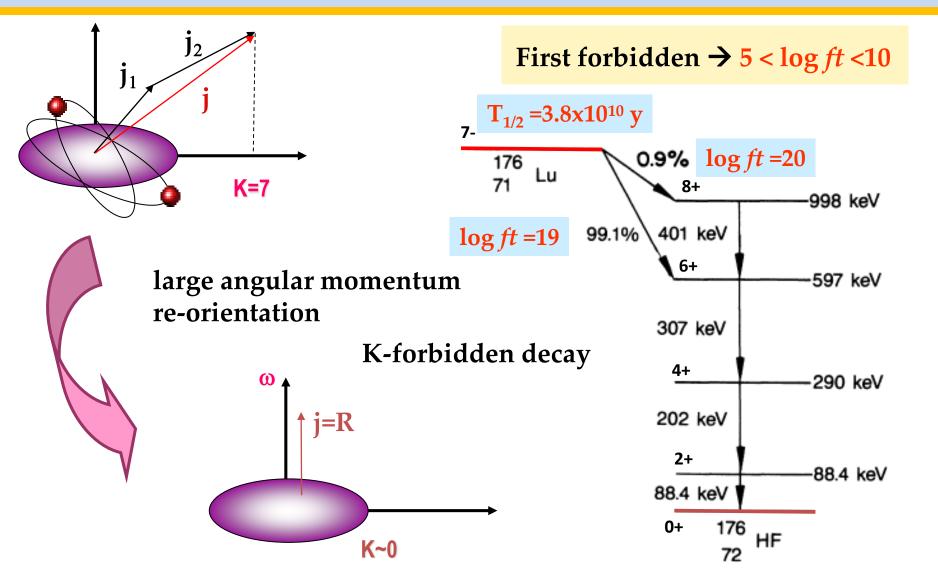
coming from experiment

Logf for dummy's

□ ENSDF analysis program LOGFT – both Windows & Linux distribution

http://www.nndc.bnl.gov/nndcscr/ensdf_pgm/analysis/logft/

☐ LOGFT Web interface at NNDC http://www.nndc.bnl.gov/logft/


Parent Information					
Nucleus	205Hg	Decay Mode	В-		
E _{level} (keV)	0.0	ΔE_{level}			
T _{1/2}	5.14	Units	М	$\Delta T_{1\!/_{\!2}}$	9
Q-value (keV) (ground state to ground state)	1533	ΔQ-value	4		
Daugther Information					
E _{level} (keV)	0	ΔE_{level}			
Transition Intensity (%)	96.8	ΔΤΙ	15	Uniqueness	None
Uncertainties	O Standard style	Nuclear Data Sheets style			

Be careful: Nuclear Structure is important

