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What is Machine Learning ?

A subset of artificial intelligence in the field of computer 
science that often uses statistical techniques to give 
computers the ability to "learn"with data, without being 
explicitly programmed

● Definition "to learn" from dictionary: 

"Gain knowledge or understanding of, or skill in by study, instruction 
or experience"

– Learning a set of new facts

– Learning how to do something

– Improving ability of something already learned

Samuel Arthur –1959 –ML in Checkers
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What is Machine Learning ?

● Why learning ?
– Machine learning is programming computers to optimize a 

performance criterion using example data or past experience

– Learning is used when :
● Human expertise does not exist
● Humans are unable to explain their expertise
● Amount of knowledge is too large for explicit encoding
● Solution changes in time
● Relationships can be hidden within large amounts of data
● Solution needs to be adapted to particular cases
● New knowledge is constantly being discovered by humans
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Can we write a computer program that does that?

The automatic extraction of semantic information from raw
signal is at the core of many applications (object recognition, 

speech processing, natural language processing, planning, etc). 
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● The (human) brain is so good at interpreting visual 
information that the gap between raw data and its 
semantic interpretation is difficult to assess 
intuitively:

This is a mushroom.
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This is a mushroom.
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This is a mushroom.
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● Extracting semantic information requires models of 
high complexity. 
– Cannot write a computer program that reproduces this process.
– However, can write a program that learns the task of extracting 

semantic information. 
● A common strategy to solve this issue consists in:

– Defining a parametric model with high capacity
– Optimizing its parameters by “making it work” on the training 

data

Learning → tuning the many parameters of the model 
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Machine learning is ...

● Finding patterns or associations that can be used 
to make prediction

● ML is general term → many algorithms / methods
● Big Picture Goal : Learning useful generalizations

Prediction
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Fields cross sections
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Statistics vs Machine Learning

● Largely overlapping fields:
– Both concerned with learning from data
– Philosophical difference on ‘focus’ and ‘approach’.

● Statistics: 
– Founded in mathematics
– Drawing valid conclusions based on analyzing existing data.

● Making inference about a ‘population’ based on a ‘sample’
● Tends to focus on fewer variables at once.
● Precision and uncertainty are measures of model goodness.

● Machine Learning:
– Founded in computer science
– Focused on making predictions or seeking patterns (generalization).

● Often considers a large number of variables at once.
● Prediction accuracy to measure model goodness.
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Types of Machine learning

Unlabeled Data
Labeled Data
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Some illustrative examples

Classification
CIFAR10 dataset (50k images 32x32x3)
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Some illustrative examples

Regression
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Some illustrative examples

Object detection and segmentation
K. He et al., Mask R-CNN (2017) arXiv:1703.06870 
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Some illustrative examples

Human pose estimation
Y. Chen et al, Adversarial PoseNet (2017) arXiv:1705.00389
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Some illustrative examples

Data generation 
M. Arjovsky et al, Wasserstein GAN, (2017) arXiv:1701.07875
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Example : Spam detection

● Naive approach
– Observe what is a spam 

and detect recurrent 
patterns

– write an algorithm of 
these patterns

– If a new email contains 
these patterns then 
classify it as a spam

– iterate until convergence

● Complex task
● High nb of rules
● Difficult to update



10/05/2021 C. Rappold – Intro to ML
20

Example : Spam detection

● Machine learning

1. A ML spam filter 
automatically learns 
relevant patterns
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Example : Spam detection

● Machine learning

1. A ML spam filter 
automatically learns 
relevant patterns

2. Automatic adaptation
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Example : Spam detection

● Machine learning

1. A ML spam filter 
automatically learns 
relevant patterns

2. Automatic adaptation

3. Can help humans to 
learn → Data Mining
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Supervised learning

● Important aspects :
– Labeled data
– Direct feedback
– Predict outcome
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Supervised learning

● Workflow

● Instance: A specific observation of data.

● Feature: An measurable property of 
instance. 

● Criterion/Outcome: The feature that you 
want to predict.

● Model: Representation or simulation of 
reality. Typically a simplification based on 
assumptions
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Supervised learning

● Main algorithms:
– K-nearest neighbors

● Within the dataset take k nearest 
neighbors (with defined norm)

● Each neighbor provide a class → vote
● Most vote gives an estimate of the 

class of the new data 
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Supervised learning

● Main algorithms:
– Support vector machine

● Dataset : (xi, yi) with i=1...n and 
y={-1,1}

● Goal is to find hyperplane :

wTx – b = 0
● Minimization : ||w||2 such that 

yi(wTxi – b) ≥ 1 for i=1...n
● Classifier : x → sgn(wTx - b)
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Supervised learning

● Main algorithms:
– Decision Trees :

● The criterion is modeled as a 
sequence of logical TRUE or FALSE

● Recursively partitions the feature 
space such that the samples with the 
same labels or similar target values 
are grouped together.

● Minimize the impurity:

G=
N l e f t

N
H (Set l e f t )+

N r i gh t

N
H (Set r i g ht )
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Supervised learning

● Main algorithms:
– Artificial neural network

→ be presented in details later !
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Unsupervised learning

● Important aspects :
– No Labels or targets
– No feedback
– Find hidden structures
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Supervised learning

● Main algorithms:
– Clustering 

● K-means and variants
– Partition N obs into K-cluster
– Minimization of the within-cluster sum-of-squares criterion:
– Iterative process by updating the centroid of each cluster 

∑
i=0

n

min
μ j∈ Ci

(||x i−μ j||
2
)
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● Main algorithms:
– Clustering 

● Hierarchical cluster analysis
– Needs one metric (||.||2) 
– linkage criteria: d between clusters as a function of the d between 

observations ( complete-linkage clustering                                   )

Unsupervised learning

max {d (a ,b):a∈ A ,b∈B }
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● Main algorithms:
– Clustering 

Unsupervised learning
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Unsupervised learning

● Main algorithms:
– Dimensionality reduction → Several aspects

● high-dimensional datasets & the “curse of dimensionality”
– When dimension UP, volume space unit hypercube UP, dataset become 

very sparse → problematic for statistics significance 
● 1D, unit interval & 100 uniformly distributed sample: distance 

spacing is 
● 10D unit hypercube, for same lattice spacing needs        samples. 

● Reduce dimension of dataset 
→ Feature extraction: pre-processing steps for other algorithms
→ Data visualization: sometimes it is nice to also see the data 

10−2

1020   
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Unsupervised learning

● Main algorithms:
– Dimensionality reduction

● Principal component analysis:

→ Decompose a multivariate 
dataset in set of successive 
orthogonal components 

→ In which a maximum amount of 
the variance.

● Those are the eigenvector and 
eigenvalue of the covariance 
matrix of the dataset.
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● Supervised Learning : Explicit target signal of answer

● Unsupervised Learning : No answer

● Reinforcement Learning : No answer to a given task, but 
encourage the training through evaluation of agentʼs behavior

Reinforcement learning

Agent: Subject

Environement : object

State change

Action: manipulationReward: Evaluation
+ observation of the state
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● Reinforcement Learning : No answer to a given task, but 
encourage the training through evaluation of agentʼs behavior

→ Find the optimal policy: the strategy of the agent 

Reinforcement learning
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Logistic regression to neural network

● Case : Separate dataset from 2 classes 
● Data from joint distribution (X, y) ~ P(X,y)

– Features:
– Labels:

– Joint distribution:  
x2

x1

X∈ℝ
m

y∈{0,1 }

p (X , y)=p(x∣y ) p( y )

Likelihood function:
Distribution of the features

For a given class
Prior:

Probability of each class

Red:y=0 Blue:y=1
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Logistic regression to neural network

● Separating classes → Predict the class of a point x:

p( y=1∣x)=
p (x∣y=1) p( y=1)

p (x)

=
p(x∣y=1) p ( y=1)

p(x∣y=0) p ( y=0)+ p(x∣y=1) p( y=1)

=
1

1+
p (x∣y=0) p ( y=0)
p (x∣y=1) p ( y=1)

=
1

1+exp(log(
p (x∣y=0) p ( y=0)
p (x∣y=1) p ( y=1)

))

Bayes rule

Marginal definition
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Logistic Sigmoid Function

Logistic Sigmoid

(z) =
1

1 + e -z
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Predicting Classes with Gaussians

p( y=1∣x)=σ(log (
p (x∣y=0)

p (x∣y=1)
)+ log (

p ( y=0)

p( y=1)
))

Log-likelihood ratio Constant w.r.t x

=σ(log ( p(x∣y=0))−log (p(x∣y=1))+const )

→ With our Gaussian data :

=σ(−1 /2 (x−μ1)
T
Σ

−1
(x−μ1)+1 /2(x−μ2)

T
Σ

−1
(x−μ2)+const )

=σ(wT x+b)

=σ((μ2−μ1)
T
Σ

−1 x+1/2(μ2
T
Σ

−1
μ2−μ1

T
Σ

−1
μ1)+const )
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Logistic regression

● What did we learn ?
– For this data the log-likelihood ratio is linear 

● Line defines boundary to separate classes
● Sigmoid turns distances from boundary into probability !

x2

x1

Red:y=0 Blue:y=1
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Logistic regression

● What if  we ignore Gaussian assumption on data?
– Model : 

● Farther from boundary wTx+b = 0, more certain 
about class

● Sigmoid converts distance to class probability

p( y=1∣x )=σ(wT x+b)≡h(x ;w)
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Logistic regression

p( y=1∣x )=σ(wT x+b)≡h(x ;w)

=
1

1+e−wT x−b

This unit is the main building block of Neural Networks!
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Logistic regression

● What if  we ignore Gaussian assumption on data?
– Model : 

● With

● Log-likelihood :

 

p( y=1∣x )=σ(wT x+b)≡h(x ;w)

pi≡p( yi= y∣x i)

p( y i= y∣xi)=Bernoulli( pi)=( pi)
y i(1− pi)

1− y i=
pi if y i=1

1−pi if y i=0

−ln L=−ln∏ (pi)
yi (1−pi)

1− y i

−ln L=∑− yi lnσ(wT x+b)−(1− yi) ln (1−σ(wT x+b))

Binary cross entropy loss function
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Gradient descent

● Likelihood function / Loss function L(q) defined over 
a model parameters q (i.e w & b)

– To minimize L(q), gradient descent uses local linear 
information to iteratively move towards a (local) minimum.

– First order approximation around q0 (Taylor expansion):

L̂(θ0+ϵ)=L(θ0)+ϵ∇ θ L(θ0)+
1
2γ

‖ϵ‖
2
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Gradient descent

A minimizer of the approximation L(q0+e) is given for :

● The best improvement is for the step:
● Model parameters can be updated iteratively by :

● q0 → initial parameters of the model

● g → learning rate
– Important for convergence of the minimization

 

∇ ϵ L̂(θ0+ϵ)=0=∇θ L(θ0)+
1
γ ϵ

ϵ=−γ ∇θ L(θ0)

θt+1=θt−γ ∇θ L(θt )
q2

q1
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Stochastic gradient descent

● Loss is composed of a sum over samples:

→ Computing gradient grows linearly with N  
● Stochastic approach (SGB):

– Compute the gradient using a random sample (small size batch)

– Gradient is unbiased → on average it moves in correct direction

– Tends to be much faster the full gradient descent

∇ θ L(θ)=
1
N ∑i=1

N
∇θ L( y i , h(xi ,θ))
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Step sizes

● Too small a learning rate, convergence very slow
● Too large a learning rate, algorithm diverges

𝜃

ℒ(𝜃)
Small Learning rate

𝜃

ℒ(𝜃)
Large Learning rate
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Feed Forward Neural Network

Hidden layer
Composed of neurons

f(i) : Activation function

ϕ(x)=σ(W 1 x)

h(x )=wT
ϕ(x)
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Multi-layer Neural Network

● Multilayer NN
– Each layer adapts basis functions based on previous layer
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Neural Network Optimization Problem

● Neural Network Model: 
● Classification: Cross-entropy loss function

● Regression: Square error loss function

● Minimize loss with respect to weights : 

h(x )=wT
σ(W 1 x)

w ,W 1

L(w ,W 1
)=∑i

yi ln ( pi)+(1− y i) ln (1−pi)

L(w ,W 1
)=
1
2∑i

( yi−h( xi))
2
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Backpropagation

● Loss function composed of layers of nonlinearity :

1. Forward step:
● Compute and save intermediate computations

2. Backward step:

3.Compute parameter gradients:

● Why sigmoid ? 

L(ϕ
N
(…ϕ

1
(x)))

ϕ
N
(…ϕ

1
(x))

∂ L

∂ϕ
a
=∑ j

∂ϕ j
a+1

∂ϕ j
a

∂ L

∂ϕ j
a+1

∂ L

∂wa
=∑ j

∂ϕ j
a

∂wa
∂L

∂ϕ j
a

∂σ (x)
∂ x

=σ(x)(1−σ( x))
Easy to compute !
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Activation functions

● Started with sigmoid, but any function can be used 
● Requirement :

– Easy/simple derivative
– That can be expressed as

function of itself
● Examples:

– tanh, 
– sigmoid, 
– ReLU = max {0,x}
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Neural Network Decision Boundaries
One neuron Two neuron

Three neurons Four neurons

Five neurons Twenty neurons

Fifty neurons

4-class classification
2-hidden layer NN
ReLU activations
L2 norm regularization

2-class classification
1-hidden layer NN
L2 norm regularization
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Deep Neural Networks

● As data complexity grows, need exponentially large number of  neurons in a 
single-hidden-layer network to capture all structure in data

● Deep neural networks factorize the learning of  structure in data across many 
layers
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Demystify neural networks

● Full implementation of training of 2-layer NN :
64

1000 100

10

Optimization part: 
gradient descent 
via back propagation 



10/05/2021 C. Rappold – Intro to ML
57

Cooking recipe in ML

● Get data (loads of them)
● Get good hardware
● Define the neural network architecture as a composition 

of differentiable functions
● Optimize with (variants of) stochastic gradient descent
● But pitfalls to be aware of:

– Data quality : Garbage In → Garbage Out / Missing data ?
– Underfitting / Overfitting
– Simplicity don’t imply better generalization
– Appropriate evaluation metric
– Mistaking correlation for causation & confounding variables
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Any questions ?
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