

Particle production in small and large systems

THE VELUX FOUNDATIONS

VILLUM FONDEN

VELUX FONDEN

Vytautas Vislavicius, Niels Bohr Institute, DK

What is a small/large system?

What is a small/large system?

What is a small/large system?

p-Pb

Collectivity in Pb—Pb

Hot and dense medium of quarks and gluons (the quark gluon plasma, QGP):

- Rapid expansion (and cooling), described by hydrodynamics \Rightarrow flow
- Hadronization, chemical freeze-out \Rightarrow particle production
- Hadronic rescatterings, kinetic freeze-out

Collectivity in Pb—Pb

Hot and dense medium of quarks and gluons (the quark gluon plasma, QGP):

- Rapid expansion (and cooling), described by hydrodynamics \Rightarrow flow
- Hadronization, chemical freeze-out \Rightarrow particle production
- Hadronic rescatterings, kinetic freeze-out

 $p_{\rm T}=\beta m\Rightarrow$ for a given $\beta\to\beta+\Delta\beta$, shift in $p_{\rm T}$ is larger for heavier particles

⇒ One of the smoking-gun signatures of the QGP

ALICE, Phys. Rev. C 99 (2019) 024906

Collectivity in Pb—Pb — and smaller systems?

Mass-dependent spectral modifications also observed in p-Pb and even pp collisions!

- Different multiplicity ⇒ different magnitude, but trends are there
- ⇒ Different nature of the effect, or same physics in pp and Pb—Pb?

Look into other observables

Freeze-out in different collision systems

Blast wave model: a ball of thermal sources expands radially with common velocity field.

Thermal spectra slope given by T_{kin} , then modified by $\beta \Rightarrow$ fit particle spectra to extract FO parameters

- ⇒ "Standard" BW: similar trends in pp and p—Pb, later FO in Pb—Pb
- ⇒ Including resonance decays: similar freeze-out in dif. collision systems

Hadrochemistry in different collision systems

"Standard model" of heavy-ions:

- Particles produced thermally,
 subject to canonical suppression
- ⇒ Enhanced (suppressed) production of

strange hadrons at high (low) multiplicities!

Standard model in pp:

- Vanilla pQCD (ala PYTHIA)
- Particles produced in string breaking
- No multi. dependence
- ⇒ Data suggests a common mechanism

for particle production in pp and Pb—Pb

ALICE, Nature Physics 13 (2017) 535-539

Hadrochemistry in thermal picture

- Evolution with multiplicity in dif. col. syst. is well-described by thermal models for most of the particles
- K*: rescatterings in hadronic phase
- ф:
 - Strangeness = 0, no suppression in thermalpicture
 - Two strange quarks, double-suppressed in pQCD string breaking

Summary

- Similarities in particle production in pp, p—Pb and Pb—Pb collisions
 - Mass-dependent boost of particle spectra
 - Particle production dominantly driven by
 multiplicity, not system size or collision energy¹

Paradigm shift:

- Is Pb—Pb an extension of pp (= no QGP?)
- Is pp an extension of Pb—Pb (= QGP in small systems?)

Personal road to particle physics

- 2007 2011 BSc., Vilniaus Universitetas, LT
- 2010 2011 BSc., Charles University, CZ
- 2011 2013 MSc., Lund University, SE
- 2011 Joined ALICE Collaboration
- 2014 2018 PhD, Lund University, SE
- 2018 current PostDoc, Niels Bohr Institute, DK