

1

$t\bar{t}$ generation at FCCee

Jeremy Andrea (IPHC, Strasbourg)

- News on generation of $t\bar{t}$ events for FCCee.
- In this presentation :
 - Focus on whizard :
 - NLO generation and event weights,
 - Generation at threshold scan,
 - Modelling of ISR and BES.
 - Status of the analysis framework (migration to FCCAnalyses).
 - Next steps.

Generators : aMC@NLO and Whizard

- Maximum possible accuracy : NLO QCD+QED,
- NLL+NLO matching : differential cross sections at threshold, effects of \sqrt{s} on kinematics,
- Account for the beam effects discussed above,
- We need at least 2 generators to perform comparisons,
- Two generators under investigations : Whizard and aMC@NLO.
- Both generators cover most of the required features (in a not-yet public release for aMC@NLO <u>link</u>) :
 - NLO accuracy, Whizard : QCD , MadGraph :QCD (QED under developments for both generators),
 - Initial State (QED) Radiation, both,
 - Beamstrahlung : **Whizard** : interface with GuineaPig/CIRCE. **MadGraph** : parametrization fitted to GuineaPig++.
 - Beam Energy Spread : Whizard : Gaussian smearing in case of FCCee, Madgraph : not available yet.

Whizard cross sections at threshold

Whizard installation and running at $t\bar{t}$ threshold

• Calculation of $t\bar{t}$ (*WWbb*) (differential) cross sections at threshold.

- NLO calculation performed with the SM model,
- To be combined with a dedicated model to reproduce the threshold,
- Fixed order calculation : can not be used "as is" for event based analyses.
- Close collaboration with Whizard Authors
 - many thanks to them.
- Installation and running :
 - Complete recipe provided privately by Authors link,
 - Requires the installation of OpenLoop, HepMC, Ocaml,
 - Examples of whizard config files provided in the package (NLO_NLL_matched.sin).
- About the calculations :
 - NLO and "NLL-matched" calculations required, to be summed,
 - 3 components for each : "Born", "Real" and "Virtual", to be summed as well.
- Observation : "correct" cross section behaviour can be observed up to ~347 GeV. Beyond, the cross sections seems decreases too quickly.
- Whizard Authors are aware and investigating. Could just be a miss-usage issue.

Differential cross section => distributions

• Combination of events (NLO or Matched) :

- Generate separately "Born", "Real" and "Virtual",
- Normalised each sample to its sum of MC weights,
- Particularity of the "Real" sample, it is based on "sub-events" => each event is decomposed in 3 different sub-events, which need to be recombined to get a correct statistical error.
- The usage of NLO whizard events required a proper accounting of subevents => implement in FCCSWAnalyses ?

√s=344 GeV

Top mass

120

130

140

150

170

160

180

190 m, [GeV]

• *Wb* invariant mass

- Off-shell tops visible at 340 GeV,
- Increase of on-shell tops at 344 GeV, already visible from NLO+NLL,
- shows incorrect shape at 365 GeV, with some negative total cross sections. Integration problems to be investigated.

• Results to be taken with grains of salt, (my) proper usage of whizard being reviews by authors.

Whizard ISR and BES (LO generation)

Beam effects/ISR

ISR and beam effects on the threshold measurement :

- ISR and Beam Backgrounds : reduces the energy in the e^+e^- centre of mass => tails toward lower energies.
- Beam Energy Spread (BES) : enlarge the \sqrt{s} distribution. BES ~0.19% per beam.

At FCCee BES : \sqrt{s} distribution symmetric and gaussian with very good approximation. BS neglected in the following.

ISR implemented. Possible overlap with PS (pythia) to be understood.

Toward centralized event generation

- Centralized event generation required for Snowmass analyses (and beyond).
- Whizard generator seems the natural choice, even if comparisons with other generators is important (pyhtia, MG_aMC@NLO).
- Several approaches possible : LO, NLO,
 - $2 \rightarrow 2 \ (e^+e^- \rightarrow t\bar{t})$, only above threshold, Pythia for decays,
 - $2 \rightarrow 4 \ (e^+e^- \rightarrow W^+W^-b\overline{b})$, Pythia for decays,
 - $2 \rightarrow 6 (e^+e^- \rightarrow f\bar{f}'f\bar{f}'b\bar{b})$, most complete, several process files (one per final states).

• Pythia used for PS and hadronization :

- Pythia6 is still the default in whizard, interface to Pythia8 is implemented but not recommended,
- Overlap between Pythia ISR and Whizard ISR ?

• Parameters to define :

- Model parameters (masses, couplings, scales),
- Pythia parameters,
- Beam parameters and beam backgrounds (BS negligible at first ?)
- Systematics ...
- Get in touch with ILC/CLIC community to reproduce similar samples ?
 - Some details available at <u>https://ilcsoft.desy.de/dbd/generated/other.html</u>
 - Share HepMC samples even ?
 - For production within FCCSW, some work required for automatization ?

Analysis within FCCSW

11

- Migration of simple events selection to FCCSWAnalyses (thanks to Clement for the help).
- Baseline for future $t\bar{t}$ specific tools :
 - Baseline event selections, for each channel : Required to preform MC validation, various reconstruction algorithms to be tested, optimisation etc...
 - Event reconstruction : Solve events reconstructions using the beam energy information, Deal with combinatorics, Kin-fit to improve the resolution.

- Preparation of the production :
 - whizard configurations for signal (and backgrounds),
 - exhaustive list of samples to generate (energy scan and above threshold),
 - Tools for MC validation (plots).
- How to perform the MC production ?
 - Automatization tools for production on CERN cluster ?
 - Separately for LHE (parton level), HepMC (+hadronization/PS/decay) and Delphes ?
 - Storage ? Access to files from outside CERN ?
 - Help from experts to answer these questions \odot .
- In parallel :
 - Investigate the production of systematic samples (scale, α_S , hadronization ? Others ?),
 - Test MG5_aMC@NLO generations with "beam effects",
 - Start the analyses ...