
Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

SiPM digitization
software
Edoardo Proserpio and Romualdo Santoro - University of Insubria and INFN

On behalf of IDEA Dual-Readout collaboration

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Idea behind
We want to develop a SiPM simulation that is:

● Parameterized: based on laboratory measured quantities or datasheet

informations. No electronic circuit simulation!

● General purpose for all experiments

● With as few dependencies as possible

● Simple to use as stand-alone or in an existing framework

2

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

SiPM
Single-photon-sensitive device built as an array of SPADs

implemented on a common substrate. Each SPAD is operated in

Geiger-Muller mode and produces a discharge avalanche when

detects a photon.

SPADs are connected in parallel and the output is the sum of all
SPAD signals: it is expected to be proportional to the number of

detected photons.

1 Pe

2 Pe

3 Pe

3

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Effects considered

The simulation accounts for the following effects:

● Dark Counts (DCR): thermally generated spurious avalanches

● Optical Crosstalk (XT): photons generated in the avalanche can

trigger adjacent cells.

● Afterpulses (AP): delayed avalanches triggered by carriers

trapped in silicon impurities

● Non-linearity: due to limited number of cells available

● Cell recovery: hitted cells recover as an RC circuit

● Cell-to-cell gain variation: small gain difference between cells

● Electronic noise

4

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Stochastic noise

Dark counts, optical crosstalk and afterpulses are generated as poisson processes.

● Delay between DCR events is exponentially distributed

● XT is generated at the same time of the “main” event in one of the 8 adjacent cells

● AP is delayed from the “main” event with a double exponential distribution (fast/slow)

Any photoelectron can generate XT and/or AP (including DCR)

DCR DCR

DCR + XT

AP

AP

XT PE

XT

XT DCR

XT

Representation of a SiPM matrix

5

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Signal generation

The signal generated by an avalanche is modelled by:

● t
0

Arriving time of the photoelectron

● a Amplitude of pulse

● 𝜏 Falling time of the signal

● 𝜏 Rising time of the signal

● 𝚯 Heavyside function

DCR, XT and AP signals are modelled in the same way.

The final signal is the sum of all single cell pulses.

Electronic noise is added at the end with a given SNR.

C++ version has also a three exponential model with an
additional slow component.

6

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Simulation chain

DCR GENERATION XT GENERATION
CALCULATE

PULSE
AMPLITUDE

SIGNAL
GENERATION

PHOTOELECTRONS

ONLINE
ANALYSIS

WAVEFORM FEATURES

The input used to generate events is the arrival time of
photons on the SiPM surface.

Photons are uniformly distributed on the sensor.

Photoelectrons statistic can be parameterized before the
SiPM simulation. In this case the input is the arriving time of
photoelectrons (like in Geant4 DR Calorimeter simulation)

AP GENERATION

7

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Output

The output can be either the signal or a list of signal features:

● Peak: max value of the signal

● Integral: sum of all samples

● Tstart: time of the first sample above threshold

● Tot: time over threshold

● Top: time position of the peak x

x

Peak

Integral

Tstart

Features are calculated considering an user defined trigger and
integration gate. Time units are calculated starting from the
trigger

Example of multiphoton peak spectrum

SIMULATED

8

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Validation
The simulation has been validated considering the MC-truth
values saved during the generation and by performing a

“laboratory-like” measurement on the produced data.

9

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Stochastic noise

The true number of dark counts and optical

crosstalk events generated is saved and their

respective rates are calculated.

Staircase measurement is performed by

counting the rate of events above a moving

threshold. Direct measurement of DCR and

XT.

Simulated data shows good agreement with

the parameters set by the user.

Expected: 200 kHz
MC DCR:200.18 kHz
Measured: 200.49 ± 0.8 kHz Expected: 10 %

MC XT: 11.2 %
Measured: 10.2 ± 0.5 %

Expected: 300 kHz
MC DCR: 300.02 kHz
Measured: 299.7 ± 0.7 kHz Expected: 5 %

MC XT: 5.2 %
Measured: 5.4 ± 0.8 %

SIMULATED

SIMULATED

10

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Non-linearity

A sipm cannot measure more photoelectrons than the

number of its cells. This causes intrinsic non-linearity:

Intrinsic non-linearity of a sipm can be described by:

Corrections may be applied by inverting the formula

The simulation correctly reproduces the expected

non-linearity effect considering different numbers of

cells.

SIMULATED

SIMULATED

11
≈400 cells

≈1600 cells

≈4444 cells

≈10000 cells

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Performance
To speed up the python simulation F2PY Fortran API (included in

Numpy) has been heavily used to compile the demanding parts of code.

C++ uses (where possible and useful) AVX2 intrinsics for vectorization.

12

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

The two main parameters responsible for the

computational time are:

● Number of photons in the event

● Number of points in the signal (sampling)

C++ version takes <1ms (5ms) to digitize a signal

considering 1ns (0.1ns) of sampling and <1000

photoelectrons.

Python version is slower but still usable. In IDEA

Dual Readout calorimeter it takes ≈ 1-2 s to

digitize a full single-particle event.
Laptop with Intel i5 - Single core

Speed
13

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Python version offers functions to save features and/or waveforms.

Features are saved in a ROOT file (uproot). Resulting file size is very

small and manageable.

Waveforms are saved in a compressed HDF5 file. Saving waveforms

is a slow process and considering 0.1ns sampling it takes ≈ 11 Mb

per 1000 signals (105 signals = 1Gb).

If all signals cannot be stored in memory waveforms have to be

saved in batches. It is recommended to write your own code in this

case.

Output files
14

30Mb per 106 signals

Example file: “wavedump.py” in dual-readout repo

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

User interface
Python version works as a script and relies on a user defined

configuration file. Settings cannot be modified during runtime.

It is up to the user to write a “wrapper” function to feed the main function

of the simulation with data and to store results.

C++ version is object oriented, allowing an easier setup and the

possibility to run multiple instances at the same time with different

parameters.

15

Practical examples in backup slides

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Work in progress
The simulation is being developed in Como and currently used in the

Dual-Readout calorimeter software framework.

Python version is tested on: Python 3.6 - 3.8 - 3.9 (Linux and MacOS)

C++ version compiles with: GCC 10.2 and Clang 11.0 (Linux and MacOS)

16

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Python version

Python simulation is continuously being optimized.

Being written as a script this version is difficult to add new
features to.

The stable version of the simulation is being used in the

IDEA Dual-Readout Calorimeter software chain to obtain

informations at the SiPM level allowing timing studies.

𝝅-

e-

17

Available at:

https://github.com/EdoPro98/pySiPM

Some documentation available at:

https://edopro98.github.io/pySiPM/docs/html/index.html

https://github.com/EdoPro98/pySiPM
https://edopro98.github.io/pySiPM/docs/html/index.html

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

C++ version

C++11 version of the simulation is under development and testing.

The code is being written following the FCCSW C++ rules and style guides.

Advantages of C++ version:

● Object Oriented

● Additional features

● Compatible with other C++ software as a shared library

● No dependencies

● Faster

● Easy to add new features

Still missing documentation and detailed validation

Available at:

https://github.com/EdoPro98/SimSiPM

18

https://github.com/EdoPro98/SimSiPM

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Backup

19

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Python version configuration

Run with:

$ python script.py -f config.txt

Where “script.py” is a script that

calls the simulation and “config.txt”

a user defined configuration file

If the config file is missing default

values will be used.

20

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

Python version wrapper

Since the core of the simulation is a function it is possible to use

multiprocessing module or even pySPARK to scale up the simulation

on multiple cores/workers.

21

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

C++ version configuration
22

Edoardo Proserpio - FCC Software Meeting - 15Th Gen 2021

C++ version execution

C++ version can be easily parallelized with OpenMP but it
requires instantiating a SiPMSensor object per each worker.

23

