THE MODULE STUDY PLANS

DISCUSSION FOR A WORKPLAN IN 2021 - 2026

CLIC Project Meeting– December 2020

Contributions from S. Doebert, M. Aicheler, M. Capstick, A. Petry, H. Mainaud Durand, R. Corsini, W. Farabolini.

OUTLINE

- Module activities in 2020
- Proposal for an experimental program in 2021 2026
- Concluding remarks.

MODULE ACTIVITIES IN 2020

Activities related to the development of an alignment platform See presentation by M. Capstick in last June's CLIC Project meeting: https://indico.cern.ch/event/921325/

Above: Prototype 2 (Including Thermal Test AS) – Jukka Vainola

CLIC PROJECT MEETING - DECEMBER 2020

MODULE ACTIVITIES IN 2020

Activities related to the development of an alignment platform See presentation by M. Capstick in last June's CLIC Project meeting: https://indico.cern.ch/event/921325/

Known Sources of Vibration

- CLIC operational frequency:
 - 50Hz (or 100Hz)
 - The ground noise
- Other sources of vibrations:
 - Water cooling circuits
 - Tunnel air flow
 - Other, unquantified sources of mechanical vibration

Studies for the development of a "Universal Adjustment Platform *Collaboration with M. Sosin (EN-SMM-HPA)*

CLIC PROJECT MEETING - DECEMBER 2020

Frequency(Hz

noint 960

nvelope low LHC

MODULE ACTIVITIES IN 2020

Characterization of cooling channels and cooling paths w.r.t. SAS deformation Work performed by HIP summer trainee Alice Petry – CLIC Note in preparation

Y-axis deformation

····· d = 15 mm ····· d = 20 mm ····· d = 25 mm ····· d = 30 mm

INITIATIVE FOR A CLIC K-MODULE PROGRAM

- Different scenarios were discussed by the CLIC Module fabrication WG and the finality of this initiative, the relevant points are:
 - Finalize the design of individual components in the perspective of assembling a full klystronbased module, define or refine interfaces (relevance for projects adopting x-band technology);
 - Finalize the general alignment strategy and build the relevant procedures;
 - Complete the study of the whole RF Unit (RF source + Module) and test it at an unprecedented RF power level;
 - Build operational experience with a K– RF Unit and perform beam tests, if possible.

GUIDELINES FOR A CLIC K-MODULE EXPERIMENTAL PROGRAM

3 Areas of Activity: Integration, mechanics and alignment; Thermo-mechanics and RF conditioning; Operation with beam (in CLEAR);

	ACTIVITIES	AREA
1	General mechanical integration, including vacuum and water cooling - assembly sequences	LAB + CLEAR
2	General alignment, girder and SAS; vibration and environmental studies	LAB + CLEAR
3	Dynamic alignment: mechanical constraints, including vacuum	LAB + CLEAR
4	Thermo-mechanical behaviour of the CLIC K-Module	LAB + Xbox
5	Validation of RF critical components and general RF power handling of the system	Xbox
6	RF conditioning and operational studies of the CLIC K-Unit (RF power source and Module)	Xbox
7	Experimental program with beam in the CLEAR tunnel	CLEAR

EXPERIMENTAL PROGRAM : MECHANICS AND ALIGNMENT

1	General mechanical integration, including vacuum and water cooling - assembly sequences	LAB + CLEAR
	Development of a technical specification for production	LAB
	Fiducialisation "à la PACMAN"	LAB
	Procedures for assembly and installation	LAB
2	General alignment, girder and SAS; vibration and environmental studies	LAB + CLEAR
	Absolute alignment of components, including longitudinal	LAB
	Transport test	LAB
	Test alignment in a real accelerator environment	LAB + CLEAR
	Perform alignment at different ambient temperatures, from 20 °C	LAB
	Vibrational modes characterization (collaboration Oxford ?)	LAB
3	Dynamic alignment: mechanical constraints, including vacuum	LAB + CLEAR
	Experience dynamic alignment with waveguide constraints, vacuum forces and thermal stresses	LAB + CLEAR

EXPERIMENTAL PROGRAM : MECHANICS AND ALIGNMENT

Laboratory space for alignment studies and integration of the new girder layout.

CLIC PROJECT MEETING - DECEMBER 2020

EXPERIMENTAL PROGRAM : THERMO-MECHANICS AND RF CONDITIONING

4	Thermo-mechanical behaviour of the CLIC K-Module	LAB + Xbox
	FEA thermal model benchmarking	LAB + Xbox
	K-Module cooling circuit optimization	LAB + Xbox
	Influence of temperature on sensors, targets, movers (in progress, HL-LHC)	LAB + Xbox
5	Validation of RF critical components and general RF power handling of the system	Xbox
	Waveguide circuit stabilization	Xbox
6	RF conditioning and operational studies of the CLIC K-Unit (RF power source and Module)	Xbox
	Develop and optimize commissioning strategies for the complete RF K-unit	Xbox
	Experience different operational conditions (start-up, breakdown, stable operation)	Xbox

EXPERIMENTAL PROGRAM : THERMO-MECHANICS AND RF CONDITIONING

EXPERIMENTAL PROGRAM : OPERATION WITH BEAM

7 Experimental program with beam in the CLEAR tunnel	CLEAR
Alignment and beam performance	CLEAR
- Study beam sensitvity to alignment quality	CLEAR
- Study the operation of active alignment driven by signals from BPMs and WFMs	CLEAR
- Study the vibrational aspects and their impact on beam quality	CLEAR
- Assess installation and maintainability easiness with the constraints of a beam line	CLEAR
RF Operation	CLEAR
- Develop strategies to handle breakdowns in the presence of beam	CLEAR
- Apply transient beam loading compensation strategies to preserve beam quality	CLEAR
- Study how to maintain correct AS phasing during operation	CLEAR
- Study beam emittance preservation and its sensitivity to the residual RF harmonic content	CLEAR
Facility operation	CLEAR
- Study the sensitivity of electronics to the radiation environment of the accelerator	CLEAR
- Assess the effectivenes of the temperature stabilization control	CLEAR
- Demonstrate a reliable 200 MeV beam energy gain in a single module	CLEAR

CLEAR EXPERIMENTAL PROGRAM : FEW EXAMPLES

SLIDES BY W. FARABOLINI – CLIC WORKSHOP 2015

A mix depending on bunch length

Octupole component in CLIC accelerating structure, **Jim Alexander**, Mon 26/01 14:40

Kick up to 19 kV for 1 mm offset and 0.22 nC per bunch,30 bunches:85.5 kV /nC /mm /m

CLEAR EXPERIMENTAL PROGRAM : FEW EXAMPLES

SLIDES BY W. FARABOLINI – CLIC WORKSHOP 2015

On YAG screen without

With BD Kicks to the beam measured on screen CA.MTV0790

CLEAR EXPERIMENTAL PROGRAM : AREAS FOR INSTALLATION

Possible installation in the CLIC Test Area or in the CLEX Area (to be checked by the Beam Dynamics team)

CLIC PROJECT MEETING - DECEMBER 2020

CONCLUDING REMARKS

- The proposed Module program is articulated in 3 areas of activity, at this moment only the first area (integration, mechanics and alignment) is financed;
- The full program would provide valuable data and experience to all those projects that intend to adopt the x-band technology as their baseline;
- The coordination of the program by CERN would assure the overall coherence of the different developments;
- We hope that such program meets the interest of the collaborating partners who intend to engage resources into the x-band technology.

