The Cryogenic DC Spark System

Elias Waagaard Supervisor: Marek Jacewicz December 10th 2020

Outline

- Background and Motivation
- Experimental set-up
- Preliminary results
 - Conditioning
 - Field emission
- Summary
- Outlook

Background and Motivation

Image courtesy: Walter Wuensch

- Hard and soft copper
- Cryo experiments: provide new information for vacuum arc theories
- <u>Purpose of this study</u>: behaviour of soft copper at cryogenic temperatures
- Recent studies at SLAC: cryogenic setting reduces BDR
 - Gradient: 250 MV/m @ 45 K with 2e-4 BD/pulse/m DOI: 10.1103/PhysRevAccelBeams.21.102002
- Possible approaches to ultra-compact linac JB Rosenzweig et al 2020 New J. Phys. 22 093067

Experimental Set-up

Typical pressure values: @ room temperature: < 1e-7 mbar @ cryo temperatures: < 5e-9 mbar

Set-up: Electrodes

Hard Cu cathode from previous experiments

Electrodes and first stage radiation shield 5

Soft Cu Cathode

Main goals of study

- Breakdown behaviour during conditioning phase
- Maximum electric field and BDR
- Field emission current and enhancement factor eta
- Comparison with previous Hard Cu data

Normalization

• Cryogenics changes gap size \rightarrow need normalized field

$$E_{norm} = \left(rac{V}{V_{max}}
ight) \left(rac{d_{max}}{d}
ight)^{0.7}$$

From I. Profatilova et al. (2019) In agreement with A. Maitland, J. Appl. Phys., vol. 32, pp. 2399-2407, 1961.

Results: Conditioning @ 300K

Flat top mode: 4630 V (113 MV/m). Measured BDR: 6.96e-6 BD/pulse

Results: Conditioning @ 30K

Conditioning: Soft Cu @30K

Results: Comparison of conditioning curves

		T=300~K		T = 30 K	
	Hard Cu 025	Hard Cu 030	Soft Cu 035	Hard Cu 030	Soft Cu 035
E_{max} [MV/m]	78.17	89.75	117.1	117.9	160.9
$E_{norm,max}$	0.604	0.693	0.808	0.994	1.24

Results: Field emission and Fowler-Nordheim plots

Results: Field emission at warm-up

Average enhancement factor β during warm-up

At @ 300 K: β = 354 +/- 20

Summary

- Conditioning @300K and @30K
 - Successful conditioning, BDR = 6.96e-6 BD/pulse at flat top @300K
 - Higher accelerating gradient in cryogenic setting: @30K normalized field 53% higher than @300K
 - · Higher saturation field for Soft Cu than Hard Cu, but slower conditioning
 - "Ricochet" effect?
- Field emission
 - Enhancement factor eta increasing with temperature
 - "Cleaner" linear trend in cryogenic setting

Outlook

- Conditioning: ricochet effect
- Field emission: cooldown instead of warm-up?
- Possible improvements for superconducting materials
 - Improved cleanliness (important for e.g. niobium)
 - Additional LN2 pre-cooling
- Cryogenic experiments important for high-gradient accelerating technology!

Thank you for your attention!

Extra slide: Set-up, HV Power Supply

Conditioning with MARX generator 1 μ s pulses, 200Hz to 2kHz, up to 10 kV

Field emission

Megger MIT525 Ramp mode up to 5 kV Current range: 0.01 nA

to 3 mA Current accuracy: ±2%

Heinzinger HNC 20.000 Programmable Voltage up to 20 kV Current range: 0.001 to 5 mA Current accuracy: ±0.1%

Extra slide: Set-up, Temperature Control

6 temperature sensors: 3 temperature sensors close to electrodes

1 on each radiation shield 1 at the first stage of cryocooler

2 heaters for temperature control

Extra results: Conditioning curve fit

Normalized electric field with power fits

Extra results: Pulses between breakdowns

Fitting coefficients for model $\ P(S)=kS^{-lpha}$

Power fit	Soft Cu Uppsala (2020)	Soft Cu Helsinki	Hard Cu Helsinki	Hard Cu Uppsala (2019)
Single	$\alpha = 0.91 \pm 0.08$	$\alpha = 1.30 \pm 0.05$	N/A	$\alpha = 1.05 \pm 0.1$
Double	$\alpha_1 = 0.95 \pm 0.1$ $\alpha_2 = 1.47 \pm 0.3$	N/A	$\alpha_1 = \overline{1.30 \pm 0.05}$ $\alpha_2 = 1.37 \pm 0.05$	N/A

Extra results: Field emission instrument check

• No systematic difference in instruments Megger/Heinzinger