

Nanobeam Technologies

1 FEBRUARY- 3 FEBRUARY

Beam dynamics tolerances for (Low Emittance) Rings

Y. Papaphilippou (CERN)

Thanks to F. Antoniou, M. Barnes, C. Belver, A. Grudiev, P. Ferracin,
S. Papadopoulou, D. Schörling, P. Zisopoulos (CERN), H. Ghasem
(Diamond), L. Fajardo (LBNL), A. Bernard (KIT-ANKA), F. Torral, M. Dominguez (CIEMAT), J. Holma, M. Pont, F. Perez (ALBA),
T. Mastorides (CalPoly)

Emittance targets

Emittance targets

Design targets and guidelines

- Reach horizontal emittances <100pm, with vertical emittance of a few pm, ideas for round beams to reach ~10 pm in both planes</p>
 - Lattice design with Multi-Bend Achromats (series of TME cells), damping wigglers, innovative bedning magnets (longitudinal gradient, anti-bends,...)
- Longitudinal emittance free for most rings, usually enlarged for increasing lifetime, unless interest for short bunches (low-alpha operation, crab cavities) for users or downstream systems (LC DRs)
- Bunch charge of ~10⁹-10¹⁰ with structure depending on the application (100-500 MHz in light sources, 1-2 GHz for damping rings)
- **Energy**: A few GeV depending on users' or design requirements
 - □ Exception e+/e- future ring colliders, i.e. **45-180 GeV**)
 - Geometrical horizontal emittance scales as γ², whereas (almost) all collective effects mitigated at higher energies

Circumference: Typically a few 0.1-1 km

- □ Exception e+/e- future ring colliders 10s of km
- Driven by the low horizontal emittance requirements ~ $\theta^3 \propto C^{-3}$

Low emittance ring

challenges and mitigations

- High-bunch brightness in all three dimensions
 - Intrabeam Scattering effect reduced by choice of ring energy, lattice design, wiggler technology, alignment tolerances
 - Electron cloud in e+ rings mitigated by chamber coatings and efficient photon absorption
 - □ **Fast Ion Instability** in the e⁻ rings reduced by low vacuum pressure and train gaps
 - Space charge vertical tune-shift limited by energy choice, reduced circumference, bunch length increase
 - Other collective instabilities controlled by low –impedance requirements on machine components
- Repetition rate and bunch structure
 - □ Fast damping times achieved with SC wigglers
 - RF frequency reduction @ 1GHz considered due to many challenges @ 2GHz (power source, high peak and average current, transient beam loading)
- Output emittance stability
 - Tight jitter tolerance driving kicker technology
- Positron beam dimensions from source
 - Pre-damping ring challenges (energy acceptance, dynamic aperture) solved with lattice design

Example: The CLIC DR CDR design

Parameters	1 GHz	2 GHz	V06
	1 0112	General	
Energy [GeV]	2.86	2.86	2.424
Circumference [m]	427.5	427.5	493.05
Bunches per train	156	312	312
Energy loss/turn [MeV]	3.98	3.98	3.98
RF voltage [MV]	5.1	4.5	4.3
RF harmonic (h)	1425	2850	3287
RF stationary phase $[^{o}]$	51	62	67
Energy Acceptance [%]	1	2.5	0.98
Natural chromaticity x/y	-115/-85	-115/-85	-148.8/-79.0
Momentum compaction factor $[10^{-4}]$	1.27	1.27	0.644
Damping times $x/y/s$ [ms]	2/2/1	2/2/1	2/2/1
Number of arc cells/wigglers	100/52	100/52	100/76
Phase advance per arc cell x/y	0.408/0.05	0.408/0.05	0.442/0.045
Dipole focusing strength $K_1[m^{-2}]$	-1.1	-1.1	-1.1
Dipole length [m]/field [T]	0.58/1.03	0.58/1.03	0.4/1.27
	V	Vithout the .	BS
Normalized Hor. emittance [nm-rad]	312	312	148
Energy spread $[10^{-3}]$	1.2	1.3	1.12
Bunch Length [mm]	1.18	1.46	0.95
Longitudinal Emittance [keV-m]	5.01	4.39	2.58
		With the IB	S
Bunch population [10 ⁹]	4.1	4.1	4.1
Normalized Hor. emittance [nm-rad]	456	472	436
Normalized Vert. emittance [nm-rad]	4.8	4.8	5
$\varepsilon_{x,IBS}/\varepsilon_{x,0}$	1.44	1.5	2.9
Longitudinal Emittance [keV-m]	6	6	5
Space charge tune shift	-0.10	-0.11	-0.2

Performance parameters of the CLIC DR for the 1 GHz and 2 GHz options in comparison to the V06 □ Increased energy $(2.424 \rightarrow 2.86 \text{ GeV})$ □ Reduce the circumference by 15% □ Ultra-low emittances in all 3 planes □ Reduced IBS effect (from 3 to 1.5) □ Reduced space charge tune shift $(-0.2 \rightarrow -0.1)$

□ Lower RF stable phase $(70^{\circ} \rightarrow 51^{\circ} (62^{\circ}))$

F. Antoniou

Improving CLIC DR design

- Reviewed DR based on recent design
 developments and collaboration effort in the low
 emittance rings community (both beam dynamics and technology)
 - □ New **DR arc cell** (**longitudinally varying bends**) and **SC wigglers** for circumference reduction (collective effects)
 - □RF frequency choice and LLRF technical development
 - □ Stripline kicker + pulser tests
 - □SC wiggler tests and developments

CLIC DR layout

CDR design of the main CLIC DRs

*The emittance is calculated using the Bjorken-Mtingwa formalism through MADX. Using the Piwinski form., the original design (with the uniform dipoles) reaches the target horizontal emittance.

Longitudinally variable bends

2

$$S. Papadopoulou$$

$$\rho_{st}(s) = \begin{cases} \rho_1, & 0 < s < L_1 \\ \rho_2, & L_1 < s < L_1 + L_2 \end{cases}$$

$$\rho_{tr}(s) = \begin{cases} \rho_1, & 0 < s < L_1 \\ \rho_1 + \frac{(L_1 - s)(\rho_1 - \rho_2)}{L_2}, & L_1 < s < L_1 + L_2 \end{cases}$$

Bending radii ratio $\rho = \frac{\rho_1}{\rho_2}$

Lengths ratio

$$\lambda = \frac{L_1}{L_2}$$

Emittance reduction factor

$$F_{TME} = \frac{\epsilon_{TME_{uni}}}{\epsilon_{TME_{var}}}$$
$$F_{TME} > 1$$

The parameterization of the emittance reduction factor FTME with the bending radii ratio ρ and the lengths ratio λ , always for λ >0.1.

With the variable bends, lower emittances are reached, providing flexibility to reduce the number of TME cells, for reaching target emittance in a shorter ring.

Innovative dipoles @ I-FAST

- Task 7.3 within I.FAST WP7: High Brightness Accelerators for Light Sources
- Ranked 3rd and accepted (without corrections) out of 31 prototype proposals (7 selected), with a 500 kCHF EC requested budget (3rd highest allocation besides management WPs)
- Partners and contact persons:

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Elettra Sincrotrone Trieste

Y. Papaphilippou

F. Toral

E. Karantzoulis

R. Geometrante

Innovative dipoles (task 7.3 – Y. Papaphilippou, CERN

- **Fabricate** an innovative dipole magnet prototype with longitudinal varying dipole field, including a transverse gradient for the ELETTRA upgrade
- Magnet concept (trapezoidal bending radius, 2.3 T peak field and ~10 T/m gradient) already established (CERN/CIEMAT)
- Proved the horizontal emittance reduction to ultra-low levels of i.e. ~60 pm @
 2.86 GeV, for the CLIC DR (M. A. Domínguez Martinez et al., <u>IEEE Trans. Appl. Supercond. 28, 1, 2018</u>; S. Papadopoulou et al, <u>PRAB 22, 091601, 2019</u>)
- First demonstrator already under construction by CIEMAT

Optimisation of Wiggler FODO

Parametrization of the steady state emittance and the IBS effect with the wiggler's peak field B_w

Nb₃Sn wiggler Design Larger potential L_w reduction L. Fajardo with $\lambda_w = 49.5 \text{ mm}$

1.6

1.5

1.4

1.3

ΰ

 $B_w = 3.5 \text{ T}$

100

90

80

70

50

40

 $L_w(m)$ 60

ADDITIONAL RESTRICTION:

Keeping the working point (WP) below 80% of the magnet's current limit for all 3.5 T $\leq B_w \leq 4$ T

Scenarios for achieving 3.5 T $\leq B_{w} \leq 4$ T with 40 mm $\leq \lambda_{w} \leq 55$ mm values:

CLIC DR Design parameters

Parameters, Symbol [Unit]	uniform I	uniform II	trapezium
Number of arc TME cells/wigglers	100/52	90/40	90/40
Dipole field (max/min), B [T]	0.97/0.97	0.97/0.97	0.62/2.32
IBS factors hor./ver./long.	1.5/1.5/1.1	1.1/1.4/1.0	1.2/1.3/1.0
Norm. horizontal emittance (with IBS), $\gamma \epsilon_{ m x}$ [nm]	478.9	648.7	434.7
Norm. vertical emittance (with IBS), $\gamma \epsilon_{_{y}}$ [nm]	5.0	4.5	4.2
Circumference, C [m]	427.5	373.7 (-13%)	373.7 (-13%)

- Optimised lattice design achieves all target parameters for a mitigated IBS effect and a ring circumference that is reduced by ~13% with respect to the old lattice
- Remarkable Dynamic Aperture, allowing very comfortable onaxis injection Impact of this study
- Significant margin for the CLIC DR emittance target (500nm), for an eventual increase of the required bunch population, as lately proposed due to the CLIC re-baselining

Emittance vs energy and circumference

Emittance normalized to energy vs. circumference $\varepsilon_r \propto (\text{Energy})^2 / (\text{Circumference})^3$

A. Streun, Lattice review meeting, 2020

Low Emittance Lattice Design in Synchrotron Light Sources by Using Complex Bends – Guimei Wang

2.09

Emittance, nm

0.07

- A bending element consisting of dipole poles, interleaved with strong focusing and defocusing quadrupole poles, QF-D-B-D-QD-D-B-D (CB)
- Integration in the NSLSII lattice for 30-fold emittance reduction
- DA increase with octupoles (3 families)

Horizontal vs Vertical emittance

Vertical emittance tuning

 Vertical emittance in the CLIC DR including all errors, specified misalignments and BPM offsets, rolls and noise jitter (100 random seeds)

Error	Unit	Value
Dipole/quadrupole/sextupole/BPM vertical misalignment	μm	40/16/70/70
Dipole/quadrupole/sextupole roll	μrad	70/50/100
BPM roll	μrad	70
BPM noise	nm	200

 The mean value of the vertical emittance for 100 seeds is around 0.1 pm rad and fc 95% of machine samples, the vertical emittance is below 0.5 pm rad.

H. Ghasem

NbTi Wiggler tests at ANKA A. Bernard, P. Zisopoulos

Parameter	ANKA
Energy / Magnetic rigidity	2.5 GeV (8.339T·m)
Circumference, m	110.4
Beam current, mA	150-170
Long/short straight sections, m	5.604 / 2.236
Natural ε_x (nm·rad) TME/DBA	56 / 90
Natural Chromaticity ξ_X/ξ_Y	-12/-13
High (low) chromaticity ξ_X/ξ_Y	+2/+6 (+1/+1)
Int.Sxt strength,m ⁻² (high) (low)	(+4.9/-4) (+4/-3)
Hor/vertical tunes Q _X /Q _Y	6.779 / 2.691
High tune operation Q_X/Q_Y	6.761 / 2.802
RF frequency (MHz)/ h _{RF}	500 / 184
CATACT field, T	2.5
CATACT length / period	0.96 m / 48 mm
Octupole CATACT, g ₃ (k ₃ ·L _W)	≤120 T/m ³ (≤20m ⁻³)
CLIC field, T	2.9
CLIC length / period	1.84 m / 51 mm

- ANKA (recently renamed KARA) is a 4-fold DBA ring with very flexible optics, able to serve 19 beamlines
- The CLIC SC Nb-Ti Wiggler prototype was installed at KIT-ANKA in 2016.
- This project is the result of a fruitful collaboration between KIT, BINP and CERN
- Several ongoing studies to characterize the impact of the wiggler on beam dynamics

J. Gethmann et al, IPAC 2017, WEPIK068, p.3087-3089

A. Bernhard et al, IPAC 2016, WEPMW002, p.2412-2415 Photo taken during FAT at E

NbTi Wiggler tests at ANKA P. Zisopoulos

- By using the mixed BPMs scheme the tunes were also measured during each ramp of the wiggler with the beam at the nominal chromatic orbit.
- Precision is increased in both cases and it is at the level of 10⁻⁴ at around 30 turns.
- The measurements were fitted with quadratic models.
- The horizontal tune-shift is not expected but it is present, possibly due to sextupolar feeddowns.
- The expected vertical tune-shift is relatively close to the theoretical predicted value.
- (ΔQx/Qx, ΔQy/Qy) ~ (0.5%, 2%) at 2.9 T

NbTi Wiggler tests at ANKA P. Zisopoulos

(a) Horizontal chromaticity, with respect to the magnetic field of the CLIC SC wiggler.

 $Q' = \frac{Q_s}{\sigma_\delta} \sqrt{\frac{A_1 + A_{-1}}{A_0}}$

- The synchrotron tune at ANKA is Qs=0.013.
- The chromaticity was extracted from the Fourier spectra of 4/Qs turns and from a fit with the dp/p.
- The measurements indicate a slight increase of Q^{*}_x
- For Q'_y the uncertainty in the vertical plane is larger so a clear trend is not evident.

Extraction Kicker System

Previous studies demonstrated that the stripline kicker is the most suitable technology.

Striplines parameters	Values	Inductive adder parameters	Values
Beam energy	2.86 GeV	Pulse rise and fall time	100 ns
Deflection angle	1.5 mrad	Pulse flat-top	900 ns
Aperture	20 mm	Extraction stability	$\pm 0.02\%$
Effective length	1.7 m	Repetition rate	50 Hz
Extraction inhomogeneity	± 0.01%		

M. Barnes, C. Belver, J. Holma

Kicker System challenges

- Excellent field homogeneity: ± 0.01% over 1 mm radius.
- Very low reflections: S₁₁ < 0.1 up to 10 MHz.
- Very low beam coupling impedance: 0.05 Ω/n in the longitudinal plane and 200 kΩ/m in the transverse plane.

Inductive Adder

- Extremely tight requirements for flat-top stability and repeatability:
 - Flat-top repeatability: ± 0.01%
 - Flat-top stability: ± 0.02%
- Rise/fall times ≤ 100 ns desired.

M. Barnes, C. Belver, J. Holma

Stripline prototype

M. Barnes, C. Belver

Design studies & fabrication (VP):

- Impedance matching
- Field homogeneity
- Power transmission
- Beam coupling impedance
- High order modes
- Electrode heating
- Manufacturing tolerances

Laboratory test and measurements:

- Power reflection
- Beam coupling impedance
- HV DC conditioning

Further optimization studies:

- New method for matching characteristic impedances
- Transient studies of the striplines
- Review of horizontal beam coupling impedance

Impedance measurements @ ALBA 🔯

) <u>Measurements without HV DC power supplies</u>: Transverse coupling impedance

Measurements pending to be fully analysed, but first estimated

F. Perez, M. Pont

Inductive adder

- The first full-scale 20-layer, 12.5 kV, prototype inductive adder for CLIC DR extraction kicker system is currently under testing.
- The best measured flat-top/waveform stabilities until now: ±0.02 % over 900 ns for a flat-top pulse at 6.3 kV ±0.02 % over 160 ns for a "controlled decay waveform" at 6.3 kV.
- Future measurements of two 12.5 kV inductive adders with a stripline kicker installed in a beamline in an accelerator test facility (at Alba in Spain, in January 2019).

Time/s

- Extreme low emittance @ high intensity beam generation and transfer drives several beam dynamics challenges
 - Lattice design, coherent and incoherent collective effects, instabilities, low emittance tunrIons, spacecharge, e-cloud, impedance budget, feedback specs
- All drive associated technologies
 - □ Magnet design
 - **Beam transfer** system (stripline, pulser)
 - **RF system**, including LLRF
 - □ Vacuum system
 - □ Alignment
 - □ Associated **instrumentation**

Continue collaboration with low emittance rings community for **R&D** and **experimental tests**

Thank You

Reserve

CLIC DR Optics β_× β_y

12

4×10-5

 $\eta_{\rm x}$

0.04.	8	
0.03.	6	
(E) 0.02	[.]	
0.01.	2	
0.00	0	
		s (m)

TME cell; Length= 2.45 m $\psi_{x}/2\pi = 0.442$ $\psi_{v}/2\pi = 0.1$

Dispersion suppressor; Length=8.57 $\psi_{x}/2\pi = 0.85$ ψ_v/2π=0.757

 β_{\times}

 $\eta_{\rm x}$

 β_{\times}

 η_{x}

 β_y

β_y

Dispersion suppressor; Length= 8.56 $\psi_{x}/2\pi = 0.85$ $\psi_{v}/2\pi = 0.748$ **H. Ghasem**

s (m)

	CERN		
Parameters	Value		
Energy [GeV]	2.86		
Circumference [m]	359.44		
No. of Dipole/wiggler	90/40		
Hor./Ver. Tune	45.27/13.33		
Nat./nor. emittance [pm/nm]	79.00/442.18		
Nat. chromaticity	-134.42/-41.63		
1 st order mom. compaction	1.17E-4		
Energy spread	1.28E-3		
Energy loss per turn [MeV]	5.79		
Damping time [ms/ms/ms]	1.17/1.19/0.60		
Radio frequency [GHz]	2		
RF voltage [MV]	6.5		
Bunch length/charge [mm/nC]	1.26/0.91		
Number of particles per bunch	5.7E10		
Natural emittance+ IBS [pm]	110		
Energy spread + IBS	1.33E-3		
Bunch length + IBS [mm]	1.31		
$\begin{array}{c} 25 \\ 0.05 \\ 20 \\ 0.04 \\ 15 \end{array}$			

Dynamic aperture with errors

The injected positron beam specification (ϵ_{xn} =65 µm and ϵ_{vn} =10 µm, δ =0.3%)

H. Ghasem

Elettra 2.0 - Emanuel Karantzoulis

Very short photon pulses via deflecting (crab) cavities ANL-SLAC - Elettra collaboration

200 buckets straight and 200 tilted. Four (4) oblique can be filled with 2 mA each. The pulse length depends on the beam line slit opening, whether there is drift or imaging optics and differs at each beam line position.

The tilted bunches will give:

The FWHM pulse duration for the imaging optics case, assuming photon energy of a 2.5 keV.

Beamline	fwhm/5%	fwhm/10%	fwhm/15%	fwhm/20%
Sector	(ps)	(ps)	(ps)	(ps)
12	1.54	2.42	3.39	4.41
1	7.31	7.52	7.89	8.35
2	1.55	2.42	3.39	4.42
3	4.45	4.86	5.42	6.12
4	1.59	2.44	3.41	4.42
5	2.94	3.47	4.22	5.09
6	1.53	2.40	3.38	4.41
7	2.17	2.85	3.73	4.66
8	1.64	2.47	3.42	4.44
9	2.46	3.06	3.88	4.79
10	3.62	3.96	4.60	5.42
11	4.92	5.28	5.78	6.48

The FWHM pulse duration for the imaging optics case for the dipole beamlines at 6.9 keV

Beamline	fwhm/5%	fwhm/10%	fwhm/15%	fwhm/20%
	(ps)	(ps)	(ps)	(ps)
DB	1.35	2.30	3.30	4.35

X. Huang and A. Zholents: (ANL-SLAC) - Elettra collaboration

ÇÉRN