

Injection/extraction systems and methods for ultra-low emittance rings (Developments in light sources)

Masamitsu Aiba, PSI Nano Beam Technologies 2.2.2021

Introduction

- Synergy among collider, damping ring and light source communities
 - We meet at Low Emittance Ring Workshops
 supported by TIARA, EuCARD-2 and ARIES → IFAST
 - Damping ring and light source are quite similar machines
 - Developments for the present and new generation light source would be useful for the other communities as well

CLIC damping ring, SLS and SLS2

PAUL SCHERRER INSTITUT

Parameters	CLIC DR	SLS	SLS2
Beam energy (GeV)	2.86	2.41	2.7
Circumference (m)	427.5	288	288
Bunch population (10 ⁹)	4.1	6.1	5.2
Lattice structure	TME/FODO	TBA	7BA /LGB-RB
Betatron tune, H/V	48.35/10.40	20.43/8.74	39.37/15.23
Uncorr. Chromaticity, H/V	-115/-85	-67.3/-22.2	-99/-33.4
Norm. emittance, H/V (nm)	456/4.8	26000/47	708/53
Energy loss per turn (MeV)	4	0.55	0.89
Damping time, H/V/L (ms)	2/2/1	8.7/8.7/4.3	3.6/5.8/4.3
Momemtum compaction	1.30E-04	6.04E-04	1.04E-04
Energy spread (10 ⁻³)	1	0.88	1.04
Rf freuency (GHz)	1 or 2	0.5	0.5

- Emittance lowered by damping wigglers in CLIC DR while by MBA in SLS2
- However, most parameters are on the same order of magnitude
- SLS vertical emittance is set to 10 pm (geometrical) during operation and can be tuned down to 1 pm (!)

Vertical emittance tuning at SLS

- Tuning in 2011, achieving ~1 pm (the requirement for damping rings and the collider, e.g., FCC-ee)
 - Analysis of the latest survey data
 - 30 µm rms elem.-to-elem.

PAUL SCHERRER INSTITUT

- Beam Assisted Girder Alignment
 - + 50 μm rms girder-to-girder initially \rightarrow Some vertical correctors strongly excited
 - Remote girder alignment with stored beam and fast orbit feedback running → Immediate online confirmation
- Systematic correction
 based on LOCO approach
- Empirical tuning,
 e.g., random optimization

Measured vertical beam size during the tuning

Ultra low vertical emittance at SLS through systematic and random optimization⁵⁷ M. Aiba^{*}, M. Böge, N. Milas, A. Streun *Paul Shame Young O. SEQ. Values, Journal*

Emittance ratio of ~0.0002 is achieved!

Vertical beam size diagnostics

- Beam size monitor to verify 1-pm emittance (a few μm beam size)
 - Using π -polarized synchrotron radiation
 - Using interferometric methods

PAUL SCHERRER INSTITUT

 Novel monitor using vertical undulator is developed at Australian Synchrotron

PRL 109, 194801 (2012) PHYSICAL REVIEW LETTERS

week ending 9 NOVEMBER 2012 MUCLAUR INSTRUMENTS A METRODO IN PRYSICS RESCAPCH

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homenane: www.elsevier.com/locate/nima

Observation of Picometer Vertical Emittance with a Vertical Undulator

 K. P. Wootton, ^{1,*} M. J. Boland, ^{1,2} R. Dowd, ² Y.-R. E. Tan, ² B. C. C. Cowie, ² Y. Papaphilippou, ³ G. N. Taylor, ¹ and R. P. Rassool¹
 ¹School of Physics, The University of Melbourne, Melbourne VIC 3010, Australia ²Australian Synchrotron, 800 Blackburn Road, Clayton VIC 3168, Australia
 ³European Organization for Nuclear Research (CERN), BE Department, 1211 Geneva 23, Switzerland (Received 11 July 2012; published 8 November 2012)

• At higher energy, X-ray pinhole camera may be used

Lattice development

1989: J.P. Delahaye, J.P. Potier, PAC'89 **'Reverse bending** magnets in a combined-function lattice for the CLIC damping ring'

> **2017**: SLS2 CDR **LGB-RB cell** by A. Streun

~4 times lower emittance

Hybrid LGB-RB lattice is considered in some light source upgrade projects

1992: A.F. Wrulich, Fourth Generation LightSources workshop at SLAC'Overview of 3rd generation light sources'Longitudinal Gradient Bend

90's: D. Einfeld et. al., Multi-bend achromat

2013: L. Farvacque et. al., IPAC'13
'A low emittance lattice for ESRF'
Hybrid lattice (Originally developed for Super-B, P. Raimondi et. al., ~2006)

Lattice nonlinearity mitigated

Low emittance lattice evolution Is driven by technology advance

- Permanent magnet
- NEG coating

Injection

• For the next generation light source injection is quite challenging due to

An overview of top-up injection schemes

Nonlinear kicker

• Development at BESSY, Soleil and MAX-IV

THPO024

Proceedings of IPAC2011, San Sebastián, Spain

DEVELOPMENT OF A NON-LINEAR KICKER SYSTEM TO FACILITATE A NEW INJECTION SCHEME FOR THE BESSY II STORAGE RING

T. Atkinson, M. Dirsat, O. Dressler, P. Kuske, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany; H. Rast, TU Dortmund University, 44227 Dortmund, Germany

Ultra short pulse kicker

- Swap-out and longitudinal injections require a kicker with short pulse, ns regime
- Many developments in the past and present, e.g.,
 - T. Naito et al., "Multi-Bunch Beam Extraction Using Strip-line Kicker at ATF", Nucl. Instrum. and Methods in Phys. Research Section A, Vol. 571, pp. 599--607, 2007
 - M. J. Barnes, T. Flowler, G. Ravida and A. Ueda, "Design of the Modulator for the CTF3 Tail Clipper Kicker", Proc. Particle Accelerator Conference, (PAC'07), pp. 2185–2187.
 - D. Alesini et al., "Design, Test, and Operation of New Tapered Stripline Injection Kickers for the e +e – Collider DAΦNE", Phys. Rev. ST Accel. Beams, vol. 13, p. 111002, 2010.
 - F. Lenkszus et al., "Fast Injection System R&D for the APS Upgrade", in Proc. 6th Int. Particle Accelerator Conf. (IPAC'15), pp. 1797–1799.
- Development for SLS2:

Thin septum

- In proton machines, a series of septa with different thicknesses is widely used
- This approach also eases the injection of electron/positron machines
- ALS injection septa:

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

STRAY FIELD REDUCTION OF ALS EDDY CURRENT SEPTUM MAGNETS*

D. Shuman*, W. Barry, S. Prestemon, R. Schlueter, C. Steier, G. Stover, LBNL, Berkeley, CA, USA

Extraction

- Extraction has not been an important topic for light sources
- However, swap-out injection involves beam extraction, and it is important to extract/dump very low emittance beam safely
- Nevertheless, the requirements on stability/precision are not as tight as the extraction from damping ring

Proceedings of FEL2014, Basel, Switzerland

MOP039

HIGH STABILITY RESONANT KICKER DEVELOPMENT FOR THE SwissFEL SWITCH YARD

M. Paraliev[#], C. Gough, S. Dordevic, H. Braun, Paul Scherrer Institut, Villigen PSI, Switzerland

High stability, 3~4 ppm amplitude jitter, is achieved through LC resonator including the kicker magnet itself

Summary

- Horizontal emittance
 - Low emittance ring lattice and related technologies are still advancing, largely driven by new generation light source developments
 - Permanent magnet dipole has become "standard"
- Ultralow vertical emittance
 - The goal of the damping ring is definitely achievable
 - The goal of FCC-ee (ϵ ratio ~0.002) may be still challenge
- Injection/Extraction
 - A lot of developments are under going for new generation light source
 - New kickers may be useful for damping rings and colliders
- Several topics (vacuum and magnet technologies, instabilities, insertion device development, feedbacks, etc.) are not covered in this talk but important!

Synergy continues!