### Update on LEIR horizontal instability study

N.Biancacci

Acknowledgements: G.Kotzian, T.Levens, E.Métral and the LIU-lons team



### Instabilities observation

- Instabilities occurred before capture with apparently random pattern.
- Harmful during LHC run -> lengthened the ion beam setup time!

Complete list of known occurrences:

09/11/2018: elogbook link

07/08/2018: elogbook link

13/11/2018: elogbook link

15/11/2018: elogbook link





# **Coherent motion**



- Beam looks horizontally unstable.
- Doubles amplitude in ~20 ms  $\rightarrow \tau = \frac{20}{\ln 2} \simeq 28$  ms [~ 10k turns]



# Frequency content



- Broad spectrum between 10 and 20 MHz.
- Can it be an HOM?  $f_r \sim 17$  MHz,  $Q \sim 3 4$



### Additional machine observations

• Without damper



- 1-Qx line unstable (~70 kHz as Qx=1.81 and f0~360kHz).
- Little degradation in performance (small intensity loss).
- Slow growth rate.
- Suspicious activity starting abruptly after the 2<sup>nd</sup> injection: not yet understood (maybe related to damper pickups sensitivity?).



### Additional machine observations

#### • With damper



An operational cycle (7 injections, >10e10 c)

- Injection oscillations stay long from 2<sup>nd</sup> injection onwards.
- Much faster instability observed.



### Additional machine observations

#### • With damper



An MD cycle (1 injection, ~2e10 c)

- Instability calms and restarts.
- Very "busy" spectrum between 5 and 20 MHz.

 $\rightarrow$  These observations suggest to investigate more the relation of the damper with this instability (damper settings to be optimized?)



# Simulations setup

PyHT has been further adapted to simulate this instability

What we included:

- 1. Electron cooling: RF-track cooling module, Parkhomchuk formula [1]
- 2. Longitudinal space charge:
  - Accounts for progressive cooling
  - Implemented as:  $W_{\text{pot,LSC}} = Z_{LSC} * \frac{\partial \rho}{\partial s}$  with  $Z_{SC} = -\frac{Z_0 cR}{\gamma^2} \left(\frac{1}{2} + \log\left(\frac{r_p}{r_h}\right)\right)$
- 3. Transverse space charge (Bassetti-Erskine [2])
- 4. Damper (impedance-like transfer function)
- 5. Multiple injections.

What we miss (mainly):

• IBS (M.Zampetakis working on tracking module)

[1] See ABP Injectors WG meeting #11 <u>https://indico.cern.ch/event/952934/</u>
[2] From Adrian Oeftiger-> see main repository <u>https://github.com/PyCOMPLETE/PyHEADTAIL</u>



### Example: full LEIR accumulation stage

LEIR longitudinal Schottky for multiple injections.

- $2 \cdot 10^{10}$  charges injected at each step every 72000 turns (200 ms).
- Final longitudinal momentum spread an transverse beam size depend on full accumulation stage.
- Here a small resonator present (Rs, Q, f) =  $(10^5 \Omega/m, 50, 15.5 MHz)$

NB: 500k turns -> 1w simulation : unfortunately too slow to allow large parameter scan and study the instability mechanism flexibly. Useful for long-term studies (e.g. ML application on Schottky).











- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{r}, \frac{\Delta p}{p}_{r}$
- No cooling, No space charge
- $\rightarrow$  Instability threshold at about  $\Delta p/p|_L = 10^{-5}$





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, No space charge
- $\rightarrow$  Instability threshold reached at few  $10^{-5}~{\rm rms}$





### Space charge benchmark

Let's add space charge (required charge/mass update in [1])



- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\Big|_{I}, \frac{\Delta p}{p}\Big|_{I}\right]$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





- HOM: Rs= 10MOhm/m, Q=5, f=17 MHz,
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge



 $\rightarrow$  The simulation needs to be tuned to the final emittance accounting for the effect of cooling and space charge



# Electron cooling tuning

- Decreasing the transverse cooling force we can get to an equilibrium representative of machine conditions.
- It may represent the effect of angle/offset.





# Scan on HOM

- HOM: Rs=variable , Q=5, f=20 MHz
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





# Scan on HOM

- HOM: Rs=variable , Q=5, f=2 MHz
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\right]_{I}, \frac{\Delta p}{p}\right]_{I}$
- With cooling, with space charge





# Scan on HOM

- HOM: Rs=variable , Q=5, f=200 kHz
- Uniform distribution in momentum  $\frac{\Delta p}{p} \in \left[-\frac{\Delta p}{p}\Big|_{T}, \frac{\Delta p}{p}\Big|_{T}\right]$
- With cooling, with space charge



Only low frequency HOMs drive instability in presence of space charge and cooling.



# Damper modeling

#### Old measurements from A.Blas and team in 2014.



Modeled as an impedance.

- Gain calibrated to damping time  $(G_H, G_V) \sim (1e8, 4e8)$ .
- Phase function as in the measurement





## Emittance at high intensity

Due to the horizontal angle in the cooler, the horizontal emittance is  $\sim$  5x the vertical one, i.e. the space charge is largely reduced.





## Effect of an electrical delay

We tried to investigate (preliminarily!) the effect of the electrical delay.

For an electrical delay of 15 ns:

- Similar frequency content and unstable trace but too fast.
- To be continued with damper gain / delay systematic scans.











# Summary and outlook

- PyHT for coasting beams was further developed to account for space charge (longitudinal and transverse), electron cooling and feedback.
- Full 7-injections simulations are possible even though long to perform.
- Tried to reproduce horizontal instability with HOM source with a single injection at 10e10 c:
  - Instability develops without space charge.
  - With space charge, the transverse cooling needs to be reduced to achieve equilibrium (otherwise hitting half integer resonance).
  - With space charge and cooling, only low frequency (200 kHz range) modes are unstable with large impedance values ( $R_s > 10^8 \Omega/m$ )
- Operation with damper is observed to produce worse instabilities than without it: some configuration optimization is needed.
  - Preliminary investigation on the effect of an electrical delay: together with the large feedback gain could lead to instabilities as the observed ones.







### **Electrical delay**



For a gain of 5*e*7



# IPM for NOMINAL

#### H: 10 mm







# **Coherent motion**



- Beam looks horizontally unstable.
- Doubles amplitude in ~20 ms  $\rightarrow \tau = \frac{20}{\ln 2} \simeq 28$  ms [~ 10k turns]
- Damper was in operation (and properly checked by GerdK)



# Frequency content



- Large amplitude from 10 to 20 MHz.
- HOM?  $f_r \sim 17$  MHz,  $Q \sim 3 4$



#### Small angle trim cures the instability



Changing angle (0.5 mrad!) in the cooler directly affects the final H emittance and momentum spread  $\rightarrow$  direct knob on stability diagram!



#### Stable vs Unstable











### An other shot











# Longitudinal SC kick

$$\begin{split} \frac{dZ_{\parallel}}{dz} &= j \frac{Z_0 \omega}{2\pi \beta^2 \gamma^2 c} \left( \frac{1}{2} + \log \frac{b_e}{r_b} \right). \\ W_l(\bar{u}_S, \bar{u}_T, s) &= \frac{1}{2\pi} \int_{-\infty} Z_l(\bar{u}_S, \bar{u}_T, \omega) e^{-j\omega s/v} \, \mathrm{d}\omega, \\ f(t) &= \int F(\omega) \, e^{-j\omega t} d\omega \quad \frac{\partial f(t)}{\partial t} = \int (-j\omega F(\omega)) e^{-j\omega t} d\omega \end{split}$$

recall

$$\delta'(ax) = \pm \frac{1}{a^2} \delta'(x)$$

$$Z_{l}(\omega) = j \frac{Z_{0}\omega C}{2\pi\beta^{2}c \gamma^{2}} \left(\frac{1}{2} + \log\left(\frac{r_{p}}{r_{b}}\right)\right) \qquad g = \left(\frac{1}{2} + \log\left(\frac{r_{p}}{r_{b}}\right)\right)$$
$$W_{l}(s) = \frac{1}{2\pi} \int j\omega/\omega_{0} \frac{Z_{0}}{\beta\gamma^{2}} g e^{-j\omega s/\nu} d\omega =$$
$$= -\delta' \left(\frac{s}{\nu}\right) \frac{Z_{0}}{\beta\nu^{2}\omega} g = -\delta'(s) \nu \frac{Z_{0}R}{\beta\nu^{2}} g \qquad Z_{l}(\omega)$$

$$= -\delta'(s)\frac{Z_0 cR}{\gamma^2}g$$

$$W_{pot}(s) = W_l(s) * \rho(s) = \delta'(s)Z_{SC} * \rho(s) = Z_{SC} * \frac{\partial \rho}{\partial s}$$

$$\frac{Z_l(\omega)}{n} = j \frac{Z_0}{\beta \gamma^2} g$$
$$Z_{SC} = -\frac{Z_0 cR}{\gamma^2} g$$



### LEIR longitudinal Schottky spectrum



• Complex gymnastics to inject, drag and capture the 7 injections from Linac3

