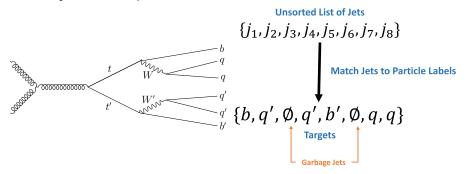
SPA-NET: Generalized Permutationless Event Reconstruction with Symmetry Preserving Attention Networks ML4Jets 2021 "Heidelberg"

▶ arXiv:2010.09206 ▶ arXiv:2106.03898 ▶ SPA-NET @ GitHub

Michael Fenton[†], Alexander Shmakov[†], Ta-Wei Ho, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi

University of California, Irvine m.fenton@cern.ch

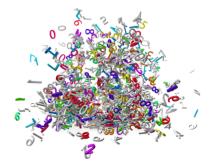
July 6, 2021



SPA-NET: Generalized Permutationless Event Reconstr

Jet-Parton Matching

• This is an example of a *set assignment* problem: we must take as input a set of objects, and output sub-sets


 \rightarrow {qqb} and {q'q'b'} subsets are our desired output

For simplicitly, I will mostly discuss all-hadronic final states, in which all input objects are jets - but this is not a fundamental requirement!

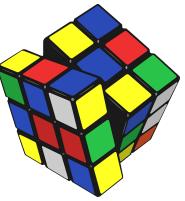
Michael Fenton (UCI)

Combinatoric Explosion

- Standard method is to build a "permutation classifier": exhaustively check every possible permutation and choose the "best"
 - But this does not scale at all 😕
- Eg tī:
 - 6j \rightarrow 90 permutations
 - $\bullet~7j \rightarrow 630$ permutations
 - $8j \rightarrow 2520$ permutations

・ コ ト ・ 同 ト ・ ヨ ト ・

- And lets not forget that we often have to do this per event, *per systematic (!)*
- \rightarrow "Combinatoric explosion" !


$$\chi^{2} = \frac{(m_{bqq} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{b'q'q'} - m_{t})^{2}}{\sigma_{t}^{2}} + \frac{(m_{qq} - m_{W})^{2}}{\sigma_{W}^{2}} + \frac{(m_{q'q'} - m_{W})^{2}}{\sigma_{W}^{2}}$$
(1)

- KLFitter does a similar thing, but is even slower and doesn't necessarily outperform χ^2 (at least in all-had)
- Other options include a "Reconstruction" BDT (eg ttHbb) or DNN (eg
 Erdmann et. al)
 - But note that these ML methods are to date only performed in leptonic channels, which have smaller combinatorics

・ロト ・回ト ・ヨト・

Reducing the Combinatorics

- These methods typically use physics arguments to reduce combinatorics
- \rightarrow Only consider the leading N jets (ordered in p_T or similar)
- \rightarrow Consider *b*-jets and light-jets separately
 - So only a *b*-jet can be in a *b*-quark position and vice-versa
 - But these types of constraints are not fully efficient; some events become impossible to reconstruct
 - And still requires many permutations!

< □ > < 同 > < 回 > < 回 > < 回

Final states more complex than the 6j $t\bar{t}$ case have mostly been considered intractable until now

- In NLP, Recurrent NNs and LSTMs have been state-of-the-art:
 - Process sentences as a sequence of words to perform translation, prediction, etc.
- "Attention" mechanisms are similar: in a sentence, which words are important context for each other word?
 - Reordering the inputs results in the same reordering of the attention matrices: **permutation invariant**
- Attention based networks have now achieved state-of-the-art performance in many NLP tasks
- $\rightarrow\,$ Lets take advantage of this for particle physics!

- When trying to make something more efficient, a useful question to consider is always; are there symmetries that we can take advantage of?
 - Of course, the answer is YES

Every jet is made equal; we want to consider them without ordering $j_1 \leftrightarrow j_2 \leftrightarrow ... \leftrightarrow j_N$

2-body decays (usually) invariant to ordering of decay products $W \rightarrow q\bar{q} \leftrightarrow \bar{q}q, \ H \rightarrow b\bar{b} \leftrightarrow \bar{b}b$

We also don't (usually) care about resonance charge; $t \leftrightarrow \overline{t}, W^+ \leftrightarrow W^-$

Tensor Attention

- We introduce *Tensor Attention*, a generalisation of attention, to encode these symmetries.
- We use the natural permutation invariance of attention to ensure invariance in the inputs $X \in \mathbb{R}^{N \times D}$
 - No more arbitrary p_T ordering!
 - *N* is the number of jets and *D* is an arbitrary hyperparameter that defines the size of the latent space representation
- We can encode the symmetry of eg W → qq (or H → bb, or any other decay with invariance in decay products) by using the NN weights matrices θ ∈ ℝ^{D×D×...×D} to construct:

$$\mathcal{S}^{i_1i_2...i_{k_p}} = \sum_{\sigma \in \mathcal{G}_p} \Theta^{i_{\sigma(1)}i_{\sigma(2)}...i_{\sigma(k_p)}}$$

$$\mathcal{O}^{j_1 j_2 \dots j_{k_p}} = X_{i_1}^{j_1} X_{i_2}^{j_2} \dots X_{i_{p_k}}^{j_{p_k}} S^{i_1 i_2 \dots i_{k_p}}$$

• $\mathcal{O}^{j_1 j_2} = \mathcal{O}^{j_2 j_1} \rightarrow qq$ invariance!

 ${}^{1}\sigma_{(1)}$ represents the symmetry between particles and k_{p} is the number of decay products from the particle p.

Tensor Attention

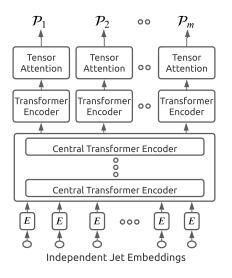
• Finally, we select the jets from each final state particle by taking the maximum of the k_p -D softmax

$$\mathcal{P}_{p}^{j_{1}j_{2}\ldots j_{k_{p}}} = \frac{\exp\left(\mathcal{O}^{j_{1}j_{2}\ldots j_{k_{p}}}\right)}{\sum_{j_{1},j_{2},\ldots,j_{p_{k}}}\exp\left(\mathcal{O}^{j_{1}j_{2}\ldots j_{k_{p}}}\right)}$$

• We produce one output per final state particle \mathcal{P}^1 , \mathcal{P}^2 , ..., \mathcal{P}^N and embed symmetry between them into the loss function:

$$\mathcal{L} = \min \sum_{i=1}^{m} CE(P_{\sigma_i}, T_{\sigma_i})$$

where CE is cross-entropy and σ represents the symmetry between the final state particles. For example, for $t\bar{t}$:


$$\mathcal{L} = \min\{CE(P_t, T_t) + CE(P_{\overline{t}}, T_{\overline{t}}), CE(P_t, T_{\overline{t}}) + CE(P_{\overline{t}}, T_t)\}$$

・ロト ・回ト ・ヨト・

- A further complication in training any ML algorithm for event reconstruction is generating sufficient statistics for any training
- The efficiency to generate full events is often low, with one or more partons being lost due to phase space cuts or matching inefficiency
 - eg; Only 32.5% of $t\bar{t}$ events are fully matched; just 6.6% of 4top!
- \bullet We add a mask term ${\mathcal M}$ to our loss function to only operate on fully matched particles
 - Fewer events must be generated
 - Improve performance on partial events

$$\mathcal{L}_{min}^{masked} = \min_{\sigma \in G_{E}} \left(\sum_{i=1}^{m} \frac{\mathcal{M}_{\sigma(i)} CE(\mathcal{P}_{i}, \mathcal{T}_{\sigma(i)})}{CB\left(\mathcal{M}_{\sigma(1)}, \mathcal{M}_{\sigma(2)}, \dots, \mathcal{M}_{\sigma(m)}\right)} \right)$$

• where CB is a normalisation to achieve class balance between different event types.

• Input: unordered list of jets

- We input the full jet 4-vector plus a boolean *b*-tag variable
- Trivially can include further info, eg substructure, q/g tagging, ...
- Output: one head per particle
 - In the cases where twoheads predict the same jet in their assignments, we keep the more confident output and select the best non-colliding prediction from the other

- To benchmark performance, we use three test all-hadronic topologies • $t\bar{t}$. $t\bar{t}H$. $H \rightarrow b\bar{b}$. $t\bar{t}+t\bar{t}$
- MG5_aMC@NLO+Pythia8+Delphes (ATLAS card)
- $\geq 6/8/12$ jet w/ $p_T>25$ GeV, $|\eta|<$ 2.5, $\geq \! 2b \text{-tags}$
- Exclusive geometric matching of partons to jets with $\Delta R < 0.4$

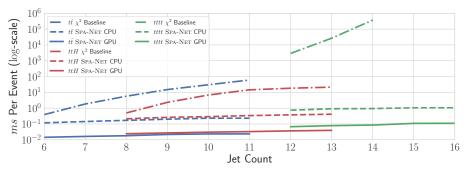
Benchmark Results : $t\bar{t}$

		Event	SPA-NET Efficiency		χ^2 Efficiency	
	N _{jets}	Fraction	Event	Top Quark	Event	Top Quark
All Events	== 6	0.245	0.643	0.696	0.461	0.523
	== 7	0.282	0.601	0.667	0.408	0.476
	≥ 8	0.320	0.528	0.613	0.313	0.395
	Inclusive	0.848	0.586	0.653	0.387	0.457
Complete	== 6	0.074	0.803	0.837	0.664	0.696
Events	== 7	0.105	0.667	0.754	0.457	0.556
	≥ 8	0.145	0.521	0.662	0.281	0.429
	Inclusive	0.325	0.633	0.732	0.426	0.532

- Event Fraction; % of events in that category
- $\bullet\,$ Event Efficiency: % of events in that category that are perfectly reconstructed
- Top Efficiency: % of fully-matched top quarks that are perfectly reconstructed
- All Events : all events containing at least one fully matched particle
- Complete Events : only events where all particles are fully matched

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

		Event	Spa-Net Efficiency			χ^2 Efficiency		
	N _{jets}	Fraction	Event	Higgs	Тор	Event	Higgs	Тор
All Events	== 8	0.261	0.370	0.497	0.540	0.056	0.193	0.092
	== 9	0.313	0.343	0.492	0.514	0.053	0.160	0.102
	≥ 10	0.313	0.294	0.472	0.473	0.031	0.150	0.056
	Inclusive	0.972	0.330	0.485	0.502	0.045	0.164	0.081
Complete	== 8	0.042	0.532	0.657	0.663	0.040	0.220	0.135
Events	== 9	0.070	0.422	0.601	0.596	0.019	0.152	0.079
	\geq 10	0.115	0.306	0.545	0.523	0.004	0.126	0.073
	Inclusive	0.228	0.383	0.583	0.572	0.016	0.153	0.087

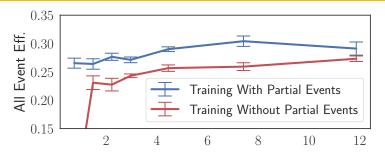

- Full $t\bar{t}H$ reconstruction never performed in all-had in any publication we found
- $\bullet\,$ Trained on events with > 2b-jets, evaluated on > 4b-jet events for consistency with χ^2
 - Efficiencies only a few percent lower when looking at trickier > 2b-jet events

		Event	Spa-Ne	T Efficiency
	$N_{ m jets}$	Fraction	Event	Top Quark
All Events	== 12	0.219	0.276	0.484
	== 13	0.304	0.247	0.474
	\geq 14	0.450	0.198	0.450
	Inclusive	0.974	0.231	0.464
Complete Events	== 12	0.005	0.350	0.617
	== 13	0.016	0.249	0.567
	\geq 14	0.044	0.149	0.504
	Inclusive	0.066	0.191	0.529

• χ^2 is intractable for this topology!

DQC

CPU Time


• The SPA-NET calculation scales only as $\mathcal{O}(N^k)$, where k is the size of the largest resonance group

• 2 for W, Z, or $H \rightarrow b\bar{b}$, 3 for top, 4 for $H \rightarrow VV \rightarrow qqqq$

- On the other hand, χ², KLFitter, or a Reco BDT/NN scale as O(N^f), with f the total number of partons in the event
 - 6 for $t\bar{t}$, 8 for $t\bar{t}H$, 12 for $t\bar{t}t\bar{t}$
- A further factor 10 is gained by running inference on a GPU

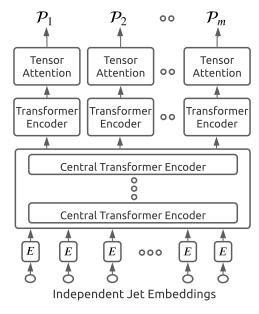
・ コート ・ 白 マート ・ コート

Impact of Partial Event Training

17/19

The $\mathbf{SPA}\text{-}\mathbf{NET}$ Package : \bullet GITHUB

- \bullet We have released a user friendly package to implement $\ensuremath{\operatorname{SPA-Net}}$ for arbitrary final states
- Simple config file:


```
[SOURCE]
mass = log_normalize
                          Input features, normalisations
pt = log normalize
eta = normalize
phi = normalize
btag = none
[EVENT]
                             Target topology
particles = (t1, t2)
permutations = [(t1, t2)]
                           Symmetry between particles
jets = (q1, q2, b)
permutations = [(q1, q2)]
                            Particle decays and symmetries
jets = (q1, q2, b)
permutations = [(q1, q2)]
```

- Our three benchmarks are just examples; the applications are not limited to top events or to all-jet events
 - eg 1l $t\bar{t} / t\bar{t}H / t\bar{t}t\bar{t}$, $H \rightarrow VV \rightarrow qqqq$, VVV, ...

nan

Summary

- We have developed a highly efficient, highly effective event reconstruction technique for arbitrary all-jet final states (and beyond!)
- Improved performance relative to baseline methods
- Previously intractable topologies are now feasible to reconstruct for the first time
- Full details in → arXiv:2010.09206 and
 → arXiv:2106.03898
- Code at GitHub

Backup

Michael Fenton (UCI)

SPA-NET: Generalized Permutationless Event Reconstr

2 July 6, 2021 20/19

990

< ロ > < 回 > < 回 > < 回 > < 回 >