

The Dark Machines Anomaly Score Challenge I

Based on arXiv: 2105.14027

https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge

Joe Davies Queen Mary University of London

Paper Authors

The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider

T. Aarrestad^{CERN} M. van Beekveld^{Ox} M. Bona^{QMUL} A. Boveia^{OSU}
S. Caron^{HEF, Nikhef} J. Davies^{QMUL} A. De Simone^{SISSA, INFN} C. Doglioni^{Lund}
J.M. Duarte^{UCSD} A. Farbin^{UnivArlington} H. Gupta^{GSoC} L. Hendriks^{HEF, Nikhef}
L. Heinrich^{CERN} J. Howarth^{Glasgow} P. Jawahar^{WPI, CERN} A. Jueid^{UnivKonkuk}
J. Lastow^{Lund} A. Leinweber^{UnivAdelaide} J. Mamuzic^{IFIC} E. Merényi^{UnivRice}
A. Morandini^{RWTH} P. Moskvitina^{HEF, Nikhef} C. Nellist^{HEF, Nikhef}
J. Ngadiuba^{FNAL, Caltech} B. Ostdiek^{Harvard, AIFI} M. Pierini^{CERN} B. Ravina^{Glasgow}
R. Ruiz de Austri^{IFIC} S. Sekmen^{KNU} M. Touranakou^{NKUA, CERN}
M. Vaškevičiūte^{Glasgow} R. Vilalta^{UnivHouston} J.-R. Vlimant^{Caltech} R. Verheyen^{UCL}
M. White^{UnivAdelaide} E. Wulff^{Lund} E. Wallin^{Lund} K.A. Wozniak^{UniVie, CERN}

Joe Davies

Challenge Justification and Goals

- Goal is to perform model-agnostic searches
- General searches (without explicit BSM signal assumption) already performed by
 - DØ Collaboration at Tevatron using SLEUTH
 - H1 Collaboration at HERA using 1-D signal detection algorithm
 - CDF Collaboration at Tevatron (using similar to above)
- 'Bump' hunting searches for localized excesses in events often used in these searches
 - Machine Learning can perform these hunts using anomaly detection techniques that have become more sophisticated

Joe Davies

Challenge Outline

- Dataset of > 1 Billion SM Events used to train ML models
 - https://zenodo.org/record/3685861
- Hackathon Dataset: (https://zenodo.org/record/3961917)
 - 4 different channels (selection cuts)
 - 11 different BSM signals
 - 19 total mass spectra
 - 34 unique signal/channel combinations
- Train each method 4 times (once per channel) using SM
- Select ML methods which perform best to apply to blinded Secret Dataset: https://zenodo.org/record/4443151

Δ

Joe Davies

General Strategy

Detection of "expected" signal events

Detection of "unexpected" anomalous events

Use fixed cuts for background rejections of 10-2, 10-3, and 10-4

Joe Davies

Variational Autoencoder

- Same structure as an AE except the latent space is continuous by design
- Sampling can be done on latent vectors to produce a continuous set of outputs
- (Generally) MSE + Kullback-Liebler divergence used as error

$$\sum_{i=1}^{N} \frac{1}{2} (t_i - y_i)^2$$

 $\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$

Typical MSE Error

KL-Divergence

Joe Davies

Challenges with the VAE

- Should the events be zero padded?
- Should we take a smaller number of objects?
- Which anomaly score to use:
 - Just one or the other of reconstruction or KL
 - Radius in the latent space
 - Beta parameters (and how to tweak them)

The Datasets

SM processes							
Physics process	Process ID	σ (pb)	$N_{\rm tot} (N_{10{\rm fb}^{-1}})$				
$pp \rightarrow jj(+2j)$	njets	$19718_{H_T > 600 \text{GeV}}$	415331302 (197179140)				
$pp \rightarrow l^{\pm} \nu_l(+2j)$	w_jets	$10537_{H_T > 100 \text{GeV}}$	$135692164 \ (105366237)$				
$pp \rightarrow \gamma j(+2j)$	gam_jets	$7927_{H_T>100 { m GeV}}$	123709226 (79268824)				
$pp \rightarrow l^+ l^- (+2j)$	z_jets	$3753_{H_T>100 \text{GeV}}$	60076409 (37529592)				
$pp \rightarrow t\bar{t}(+2j)$	ttbar	541	13590811 (5412187)				
$pp \rightarrow t + \text{jets}(+2j)$	$single_top$	130	7223883 (1297142)				
$pp \rightarrow \bar{t} + \text{jets}(+2j)$	$single_topbar$	112	7179922 (1116396)				
$pp \rightarrow W^+W^-(+2j)$	ww	82.1	17740278 (821354)				
$pp \rightarrow W^{\pm}t(+2j)$	wtop	57.8	5252172(577541)				
$pp \rightarrow W^{\pm} \bar{t}(+2j)$	wtopbar	57.8	4723206 (577541)				
$pp \rightarrow \gamma \gamma (+2j)$	2gam	47.1	17464818 (470656)				
$pp \rightarrow W^{\pm}\gamma(+2j)$	Wgam	45.1	18633683 (450672)				
$pp \rightarrow ZW^{\pm}(+2j)$	zw	31.6	13847321 (315781)				
$pp \rightarrow Z\gamma(+2j)$	Zgam	29.9	15909980 (299439)				
$pp \rightarrow ZZ(+2j)$	ZZ	9.91	7118820 (99092)				
$pp \rightarrow h(+2j)$	single_higgs	1.94	2596158 (19383)				
$pp \rightarrow t\bar{t}\gamma(+2j)$	ttbarGam	1.55	95217 (15471)				
$pp \rightarrow t\bar{t}Z$	ttbarZ	0.59	300000 (5874)				
$pp \rightarrow t\bar{t}h(+1j)$	ttbarHiggs	0.46	200476 (4568)				
$pp \rightarrow \gamma t(+2j)$	atop	0.39	2776166 (3947)				
$pp \rightarrow t\bar{t}W^{\pm}$	ttbarW	0.35	279365 (3495)				
$pp \rightarrow \gamma \bar{t}(+2j)$	atopbar	0.27	4770857 (2707)				
$pp \rightarrow Zt(+2j)$	ztop	0.26	3213475 (2554)				
$pp \rightarrow Z\bar{t}(+2j)$	ztopbar	0.15	2741276 (1524)				
$pp \rightarrow t\bar{t}t\bar{t}$	4top	0.0097	399999 (96)				
$pp \to t \bar{t} W^+ W^-$	ttbarWW	0.0085	150000 (85)				

Madgraph+Pythia+Delphes | jets, b-jets, electrons, muons, photons

Joe Davies

The Datasets

Channel 1: 214,185 SM Events

• $H_T \ge 600 \text{ GeV}$

- MET \geq 200 GeV
- MET/H_T ≥ 0.2
- At least 4 (b)-jets with $p_T > 50 \text{ GeV}$
- At least 1 (b)-jets with $p_T > 200 \text{ GeV}$

Channel 2b: 340,268 SM Events

- $H_T \ge 50 \text{ GeV}$
- MET \geq 50 GeV
- At least 2 μ/e with $p_{\scriptscriptstyle T}>15$ GeV

Channel 2a: 20,005 SM Events

• MET \geq 50 GeV

- At least 3 μ /e with p_T > 15 GeV
- At least 1 (b)-jets with $p_T > 200 \text{ GeV}$
- <u>Few training events, many ML</u> <u>methods struggle</u>

Channel 3: 8,544,111 SM Events

- $H_T \ge 600 \text{ GeV}$
- MET \geq 100 GeV
- <u>Large dataset, timed out training</u>
 <u>on some methods</u>

Joe Davies

The BSM Physics

BSM process	Channel 1	Channel 2a	Channel 2b	Channel 3
$Z' + { m monojet}$	×	×		×
Z'+W/Z				×
$Z' + { m single top}$	×			×
Z' in lepton-violating $U(1)_{L_{\mu}-L_{\tau}}$		×	×	
R-SUSY stop-stop	×		×	×
∦ -SUSY squark-squark	×			×
SUSY gluino-gluino	×	×	×	×
SUSY stop-stop	×			×
SUSY squark-squark	×			×
SUSY chargino-neutralino		×	×	
SUSY chargino-chargino			×	

Some processes have different mass spectra or decay modes: 19 signals, 34 Signal-Channel combinations

Joe Davies

Conclusion

- Model-agnostic searches
- Primarily use Variational Auto-Encoders
- Variety of channels and signals
- Stick around to find out about the results!

HOW TO ANNOY A STATISTICIAN

Joe Davies