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What is a representation?

Last layer of a classifier Latent space of a VAE

A representation is a vector of features which are used as input for some set of tasks.

The term is usually applied to the output of some network or function, but
raw/preprocessed inputs can also be regarded as representations (e.g. (pT , η, φ)
contituents, jet images). 2



What is it good for?

Last layer of a classifier

• Representation allows classification
with very simple (linear) function

• Useful for learning another
classifier with few labeled training
examples: append a small head
network and finetune
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What is it good for?

• Representation may encode
high-level conceptual information
which can be interpreted or
manipulated

r0 r1

r2

Q/t=0.01

Latent space of a DVAE trained on QCD
and top jets

“Better Latent Spaces for Better Autoencoders”,
Dillon et al., 2021

Latent space of a VAE
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Why learn a representation?

One of the big stories in ML is that learned features beat hand-engineered ones.

Recall: A representation is a vector of features which are used as input for some set
of tasks.

Therefore, we should try to learn the representation.

Example traditional learning pipeline to achieve several

tasks on the same data

Example representation learning approach: once the

representation is learned, the additional learned

functions (e.g. classifier, VAE) can be much simpler
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How do we learn a representation?

Self-supervised learning: Set up a non-trivial task that can be constructed from
unlabeled data. Often a classification task with constructed labels.

Example: Jigsaw puzzle

A picture is divided into ‘jigsaw pieces’. The network has to learn how to correctly
arrange the pieces. In doing so, it learns to extract relevant features from the data.

“Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles”, Noroozi and Favaro, 2016
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How do we learn a representation?

Contrastive learning: A type of self-supervised learning where the network has to
learn to match similar examples and push apart dissimilar examples. Pairs of similar
examples are created by di�erent transformations (augmentations) of the same data.A Simple Framework for Contrastive Learning of Visual Representations

• Composition of multiple data augmentation operations
is crucial in defining the contrastive prediction tasks that
yield effective representations. In addition, unsupervised
contrastive learning benefits from stronger data augmen-
tation than supervised learning.

• Introducing a learnable nonlinear transformation be-
tween the representation and the contrastive loss substan-
tially improves the quality of the learned representations.

• Representation learning with contrastive cross entropy
loss benefits from normalized embeddings and an appro-
priately adjusted temperature parameter.

• Contrastive learning benefits from larger batch sizes and
longer training compared to its supervised counterpart.
Like supervised learning, contrastive learning benefits
from deeper and wider networks.

We combine these findings to achieve a new state-of-the-art
in self-supervised and semi-supervised learning on Ima-
geNet ILSVRC-2012 (Russakovsky et al., 2015). Under the
linear evaluation protocol, SimCLR achieves 76.5% top-1
accuracy, which is a 7% relative improvement over previous
state-of-the-art (Hénaff et al., 2019). When fine-tuned with
only 1% of the ImageNet labels, SimCLR achieves 85.8%
top-5 accuracy, a relative improvement of 10% (Hénaff et al.,
2019). When fine-tuned on other natural image classifica-
tion datasets, SimCLR performs on par with or better than
a strong supervised baseline (Kornblith et al., 2019) on 10
out of 12 datasets.

2. Method
2.1. The Contrastive Learning Framework

Inspired by recent contrastive learning algorithms (see Sec-
tion 7 for an overview), SimCLR learns representations
by maximizing agreement between differently augmented
views of the same data example via a contrastive loss in
the latent space. As illustrated in Figure 2, this framework
comprises the following four major components.

• A stochastic data augmentation module that transforms
any given data example randomly resulting in two cor-
related views of the same example, denoted x̃i and x̃j ,
which we consider as a positive pair. In this work, we
sequentially apply three simple augmentations: random
cropping followed by resize back to the original size, ran-
dom color distortions, and random Gaussian blur. As
shown in Section 3, the combination of random crop and
color distortion is crucial to achieve a good performance.

• A neural network base encoder f(·) that extracts repre-
sentation vectors from augmented data examples. Our
framework allows various choices of the network archi-
tecture without any constraints. We opt for simplicity
and adopt the commonly used ResNet (He et al., 2016)

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T
t
′ ∼ T

f(·) f(·)

g(·) g(·)

Maximize agreement

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ∼ T and
t′ ∼ T ) and applied to each data example to obtain two correlated
views. A base encoder network f(·) and a projection head g(·)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(·) and
use encoder f(·) and representation h for downstream tasks.

to obtain hi = f(x̃i) = ResNet(x̃i) where hi ∈ Rd is
the output after the average pooling layer.

• A small neural network projection head g(·) that maps
representations to the space where contrastive loss is
applied. We use a MLP with one hidden layer to obtain
zi = g(hi) =W (2)σ(W (1)hi) where σ is a ReLU non-
linearity. As shown in section 4, we find it beneficial to
define the contrastive loss on zi’s rather than hi’s.

• A contrastive loss function defined for a contrastive pre-
diction task. Given a set {x̃k} including a positive pair
of examples x̃i and x̃j , the contrastive prediction task
aims to identify x̃j in {x̃k}k 6=i for a given x̃i.

We randomly sample a minibatch of N examples and define
the contrastive prediction task on pairs of augmented exam-
ples derived from the minibatch, resulting in 2N data points.
We do not sample negative examples explicitly. Instead,
given a positive pair, similar to (Chen et al., 2017), we treat
the other 2(N − 1) augmented examples within a minibatch
as negative examples. Let sim(u,v) = u>v/‖u‖‖v‖ de-
note the dot product between `2 normalized u and v (i.e.
cosine similarity). Then the loss function for a positive pair
of examples (i, j) is defined as

`i,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k 6=i] exp(sim(zi, zk)/τ)
, (1)

where 1[k 6=i] ∈ {0, 1} is an indicator function evaluating to
1 iff k 6= i and τ denotes a temperature parameter. The fi-
nal loss is computed across all positive pairs, both (i, j)
and (j, i), in a mini-batch. This loss has been used in
previous work (Sohn, 2016; Wu et al., 2018; Oord et al.,
2018); for convenience, we term it NT-Xent (the normalized
temperature-scaled cross entropy loss).

SimCLR: “A Simple Framework for Contrastive Learning of Visual Representations”, Chen et al., 2020
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How do we learn a representation?

Define: z = fθ(x) is the output of the network, τ is a temperature parameter and sim
is the cosine similarity: sim(zi, z′i ) =

zi·z′i
‖zi‖‖z′i ‖

Loss function: normalized temperature-scaled cross-entropy (NT-Xent)

Li = − log
exp(sim(zi, z′i )/τ)∑

j∈batch Ii 6=j
[
exp(sim(zi, zj)/τ) + exp(sim(zi, z′j )/τ)

]

• alignment: sim(zi, z′i )→1,
numerator is maximised

• denominator minimised when zi
distributed uniformly on the
hyper-sphere
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Which augmentations are relevant to jet physics?

The network will learn to be invariant to the augmentations applied (under perfect
convergence). This means we can impose physically motivated symmetries:

• Rotation around the jet axis

• Invariance to permutations of constituents

Two ways to impose (approximate) symmetries: through augmentations and through
model constraints. We choose to use a permutation invariant network and impose
rotational symmetry through augmentations. Note that we always need to impose
some invariances through augmentations in order to do contrastive learning at all.
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Permutation Invariance: transformer network

We use a transformer network whose output is invariant to the constituent ordering.
Similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler

Network training:
1. sample batch of jets {xi}

2. create augmented batch of jets {x′i}

3. forward-pass both batches through the network

4. compute L and derivatives and back-propagate

5. representation is taken before the head network

MHSA = multi-headed
self-attention
FF = feed forward (fully
connected)
The transformer network can

accept variable-length inputs and

supports masking
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Network detail: multi-headed self-attention

Self-attention applied to the single sequence element x1

Multi-headed self-attention. Each box represents a tensor
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Evaluating performance: linear classifier test

In order to evaluate the performance of our unsupervised representation learning
method, we test how well a supervised linear classifier performs on the
representation.

It reflects the idea that a good representation should encode relevant information
about the inputs roughly linearly.

This test is an imperfect proxy for the quality of the representation, but is commonly
used in the representation learning literature.
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Linear classifier test results

We call this method JetCLR
code to come with paper

The representation is 1000
dimensional

Data: 100k top and 100k QCD.
Train/test split = 90/10

The unsupervised JetCLR repr.
performs just as well as
energy flow polynomials
(EFPs), using only the
contrastive learning concept,
permutation inv and
rotational inv
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Linear classifier test

Top-tagging

JetCLR (rot.), AUC: 0.97

EFPs (d≤7), AUC: 0.97

Jet img., AUC: 0.93

JetCLR (no rot.), AUC: 0.92

Constit., AUC: 0.77
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Summary

Contrastive Learning
Unsupervised representation learning
using data augmentations
(symmetries/invariances).
Learns to pull together similar inputs and
push apart dissimilar ones.

JetCLR
Unsupervised learning of jet observables
with contrastive learning and symmetries.
paper/code→ soon

JetCLR can already incorporate other data: tracking info,

particle ID, etc, all while retaining the rotational and

permutation invariance of the constituents.
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