Classification-based Anomalous Jet Tagging

Taoli Cheng

Joint work with Aaron Courville

Jul. 06, 2021 ML4Jets

Motivation

- Generative models are not robust for Out-of-Distribution (OoD) detection in practice (slide)
- Supervised jet classifiers learn useful representations which could be generalized

Tasks	Base AUC	Transfer AUC
$W/QCD \rightarrow Top/QCD$	0.926	0.891
$g/q \rightarrow Top/QCD$	0.926	0.791
$Top/QCD \rightarrow W/QCD$	0.957	0.911
$q/g \rightarrow W/QCD$	0.957	0.822
$W/QCD \rightarrow q/g$	0.861	0.763
Top/QCD \rightarrow q/g	0.861	0.759

Table 2: Transferability results shown here. In *Base AUC*, the original trained AUC for the target task is shown, while in resulting in *Transfer AUC*, transferred embedding is used for training the classifier.

[T. Cheng, et al. arXiv: 2007.01850]

[T. Cheng, arXiv: 1911.01872]

 Opportunity to leverage sophisticated physics-inspired architectures: not only a jet classifier, but also a representation learning machine

Classification based Anomaly Detection (CLF-AD) -- General Approach

Basic assumption:

A well trained jet classifier will not be able to correctly classify out-of-distribution

jets and thus give low confidence score

- Classifier architecture
- Anomaly Scores
 - Maximum Softmax probabilities / Confidence
 - Predictive Entropy / Uncertainty
 - 0 ...
- Training procedure
 - Auxiliary tasks (outlier exposure)
- Predictive uncertainty (Ensembles)

Workflow for Anomalous Jet Tagging

- In-distribution training data
 - Simulated large-cone QCD/W/Top jets with pT~600 GeV
 - Low-level jet constituent 4-vectors (or variants)
- Model (a decent baseline: ParticleNet) [Huilin Qu, Loukas Gouskos. arXiv: 1902.08570]
- Training
 - One-vs-All binary classification
 - All-vs-All multiclass classification
- Post-processing: anomaly score
- Out-of-distribution test sets
 - OoD class 1: H (174 GeV) \rightarrow hh (h \rightarrow jj) with h (20 GeV)
 - OoD class 2: H (174 GeV) \rightarrow hh (h \rightarrow jj) with h (80 GeV)
 - o OoD class 3: "Top" (174 GeV) with W (20 GeV)

Softmax Probability Simplex

• Test set type affects the simplex distributions $\{p_i(x)\}$

Improving Uncertainty Estimate

- Deep ensembles: training M models and averaging over the predictions (alternative uncertainty estimation approach w.r.t. Bayesian Neural Networks)
- One-vs-All (OvA) classification combined with All-vs-All (AvA) classification:
 brings sharper decision boundary

$$p_i^{\text{OVA-AVA}}(x) = p^{\text{i-OVA}}(x) \times p_i^{\text{AVA}}(x)$$

One-vs-All (OvA) combined with All-vs-All (AvA)

- Combining OvA and AvA softmax probabilities
 - AvA classification pulls OoD samples to the center
 - OvA classification pulls OoD samples away from the closed-world simplex

Anomaly Scores

Softmax probabilities vs Logits vs Representation Layer (Final Features)

- Softmax probabilities based scores
 - Maximum Softmax Probability: $-\max\{p_1,p_2,p_3\}$
 - \circ Softmax Probabilistic Entropy: $-\sum_{i=1}^k p_i log(p_i)$
- Logits based scores
- Representation based scores
 - Distance in feature space
 - Distance-based logits: Replacing logits with feature distance for softmax

Confidence Distribution -- Maximum Softmax Probability

- Taking the (negative) maximum softmax probability $-\max\{p_1,p_2,p_3\}$ as the OoD score
 - In-distribution samples -> close to 1.0
 - Out-of-distribution samples -> extreme case 0.33 (for classical softmax outputs)

Softmax Probabilistic Entropy Distribution

- Taking softmax entropy of (p1, p2, p3) $-\sum_{i=1}^{k} p_i log(p_i)$ as the OoD score
 - In-distribution samples -> close to 0
 - \circ Out-of-distribution samples -> peaks at \sim 0.7 (entropy of \sim (0.5, 0.5))

Scenario Comparison -- Area Under ROC Curve

- Discriminating QCD (in-class 1) and OoD classes
- Better uncertainty estimate
 → better OoD detection
- OVA-AVA with anomaly score $-\sum_{i=1}^k p_i log(p_i)$ prms best in all the OoD test sets.

Model-Score / AUC	OoD class 1 ${ m H}_{ m 174GeV}^{h=20GeV}$	OoD class 2 ${ m H}_{174 { m GeV}}^{h=80 { m GeV}}$	OoD class 3 $_{ m Top}^{W=20GeV}_{ m 174GeV}$
SingleModel-Entropy	0.624	0.654	0.664
SingleModel-MSP	0.654	0.666	0.692
Emsemble10-Entropy	0.633	0.665	0.675
Emsemble10-MSP	0.665	0.677	0.706
OVA-AVA-Entropy	0.677	0.681	0.708
OVA-AVA-MSP	0.668	0.670	0.705
SingleModel-EnergyScore	0.552	0.675	0.599
OE-VAE (previous works)	0.736	0.624	0.721

Mass Correlation -- CLF-AD

- Not strongly mass-correlated compared with generative models
- Picking average mass of in-distribution classes

Results -- Discussion

- Classifier architectures (MLP, ParticleNet, etc.)
 - Better classification performance → better OoD detection
- Anomaly scores
- Increased uncertainty estimate helps with OoD detection
- Different mass correlation
 - Depends on in-distribution classes
 - Carefully choosing in-distribution classes helps in this case

Discriminative vs Generative

- Representation-driven approach
- Extra freedom of in-distribution classes
- Mass correlation depends on in-distribution classes
- Sensitive to jet types

- Likelihood-driven approach
- Sensitive to dominant correlations (in cases without further learning guidance)
- Strong mass correlation
- Possibility of assigning high likelihood to OoD samples (observed in both computer vision and jet physics)

Summary

- We introduce an alternative supervised discriminative approach for anomalous jet tagging
- QCD/W/Top as in-distribution classes; tested on held-out jet types
 - Better classification accuracy → Better OoD detection
 - Better uncertainty estimation → Better OoD detection
- Combining One-vs-All and All-vs-All classification to improve OoD detection
- Focuses on reporting softmax-probability-based anomaly scores → other options
- Only reporting on limited test OoD types → to further expand the test spectrum

Thanks!

Backup

Anomaly Detection can Fail

back

- Outliers can be assigned higher probability sometimes, this happens in a general scope of anomaly detection using generative models
- Quick example: MSE based anomaly metric has intrinsic mass dependence → naive VAE assigns higher probability to lower mass jets

Figure 2: OOD scores from PixelCNN++ on images from CIFAR-10 and SVHN.

D. Hendrycks, M. Mazeika, T. Dietterich.
 Deep Anomaly Detection with Outlier Exposure.
 arXiv: 1812.04606

THE PARTICLENET ARCHITECTURE Slide from Huilin Qu, ML4Jets 2020

Based on EdgeConv and DGCNN, we developed PARTICLENET, a customized architecture for jet tagging on particle clouds

EdgeConv block

ParticleNet architecture

ParticleNet-Lite

23

Mass Correlation -- VAE

