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Monte Carlo event generator

® Monte Carlo parton shower generators encode our understanding of the
physics process that produces a jet. We only observe the particles

® During simulation, successive splittings of the initial state particle
generates a set of final state particles (leaves).

® Many showering histories (trees) could give rise to the same set of |eaves.

It would be powerful if we could unify generation (the simulation /
forward model) and inference (MC tuning, jet tagging, etc.).
To do this, we need first to reframe jet physics in probabilistic terms.

Evolu of the shower is latent




Jet Reconstruction

® The goal of jet reconstruction is to invert the generative process.

® Task: reconstruct the unobserved showering history (latent tree) z from
observed particles x.

® In more general terms we want to find the truth level hierarchical
clustering given a set of leaves (jet constituents) x.

Hierarchical Clustering
Recursive partitioning of a data set into successively smaller clusters.

® Finding the truth level hierarchical clustering is not unique, because there
are many possible showering histories that could give rise to the same
leaves. But there is a notion of “best” or “most likely” hierarchy.

Reconstruction

Generative process

NYU



Reframing jet physics in probabilistic terms kb

Joint likelihood: p(, z|0) 3
Marginal likelihood: p(x|0) = /dz p(z, z|0) §
Posterior distribution on histories: p(z|z, 0) A
Maximum a posteriori (MAP) tree: ArgMaXZ p(z\az, 6’) §
Maximum likelihood parameter: ArgMax, p(x|0) g
G

Latent Joint likelihood:
showering Z
history p(z.210) = | [ p(a;j|2parent(a;) 0) | [ P(2il2parent(z:) . )
j i




Unification of generation and inference NYU

Example tasks

® Maximum a posteriori (MAP) tree ArgMax, p(z|z, 0)

- Generative model describes the joint likelihood p(z, 2|0) x p(z|x, 0)

® Marginal likelihood p(z|0) = /dz p(z, z|0)

- Maximum likelihood parameter ~ ArgMax, p(z|0) Matthew Drnevich’s talk!

- Likelihood ratio for different types of jets P ('/’E Hl)

Lauren Greenspan’s talk!
p(x|Ho)
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Parton Showers generators

Herwig 7

® |t is hard to access the joint likelihood of a showering process.

® Other complications related to momentum conservation that could be addressed
[Bauer & Tackmann ’08].

p(xv Z|‘9) — Hp(ﬂfj ‘Zparent(a:j)v 9) Hp(zi|zparent(zi)7 9)

9 )

To prototype we built our own simplified model!




. o o go . CHEP2021 [C . Drnevich, Macaluso, K4 NYU
Ginkgo: Simplified Generative Model for Jets Pappadipl:f‘:?f;w;gﬁj05I;‘]:a "

Kyle Cranmer, SM & ca
Duccio Pappadopulo AN
github.com/ T
SebastianMacaluso/ @
G/ N KGO \z;.“?

ToyJetsShower \

bx:332:) bf;s 33333

M t [ t [ /

o Iva I o n V:0'08
1333
3

V:0°30 V:0'00

bs:1yd bx:zo¢

bA:se0 bA:as ¢

VO'TT V:0'00

bx:10°T bxi1g1

bA:1379 bA:zes

............
bA:322 bA:33) bA:33s byt bA:¢¢

V:0'00 V:0'12 V002 V03¢ V:0'00 V:0'30
bz bx:T¢¢ bx:g¢ bx:y@ bx:¢g bx:¢7
bx:1g2 bA:tey bA:1os /bk:g'g bx:y0 by ¢

® Build a model to aid in ML research for jet physics. / /\
|

308 2071
F ° I . / ° ° ° I . . . bA:332 bA:ee
® racilitate exact approxnnate combinatoria OPtIIIlIZ&tIOn. | | |
V008 V0Tt V:00) V:0'0) V:0'1e V:00) V:00@ V:0'02 V00t V:0'00 V008 V010 V032 V00t V:0'08 V008 AUN V:0'02 V0Tl
bx:1273 bx:o3¢ bx:got bx:33°0 bx:30°8 bx:2 by bxi1g bx:tp bx:1379 byt bx:\3 bx:1¢0 bx:i¢s bx:pp bx:1o bx:¢¢ b3t bx:3y
bA:7e" 10) 100" : bA:3¢g bA:o¢ bA:13 bA:ses bx:iys bA:1A0 ba:gr9p  bA:gs bA:1e2 ba:gs bA:T) bA:1g ba:g-o b3 bA:3@
V:000 V:000 V000 V:000 V:0°00 V-:000 V:O'OO/VZO'OO V:000 V:0°00 V000 V3O'OO/V30'OO V000 V:000 V:000 V-:000 V:000 vo‘okrom V30'OO\V3O'OO V000 V:000 V:000 V000 V:000 V:000 V:000 V:000 XO'OO V3O'00\V:O'00 V000 V:000 VZO'O(XO'OO V30'OO/V30'00 VUO[V:O'OO V000 VZO'O(XZO'OO VZO'OO/VO'OO V000 V:000 V3O'OO\V3O'
x:j22 bxiyee bxiyy bxigprp bwigpy bwigpg bxisgry bwizgy bsijgig bsiygp bwizgeyp bxijgit bxijo¢ b bxiy¢ bxiz bwigy bxigg bwxig2 bwigo byigrp bwiyy bxigy bwiyt bwiyp bxiyy bwieg bwizee bwigp bwiyre bwigty bxiyy bwieg bxiyg bwigy bxiyp bwyy bwig¢ bwig2 bwgg bxigg bxizrp bwiy¢ bxizg bxiyy bsipy bxiygy by bxipp by
bA:tey bhigp bAigry bA:z¢y bA:3z2 bA:332 bA:zzt bA:33-3 bArje¢ bh:jea bA:gzt bAiyy3 bAijze bAiee bA:gs bA:zry bAi30 bA:ij30 bAiep by bAijzig bA:31 b 8 i@ bAiga briga bhiqg blhigg bty bAigp bhgy bAigy bAg bA:g'1 bhigp bhigp bAigp brigg bAiyg bAigg bA:zig bAiz¢ bhiyiy bAipg bAipy bhig¢ bAizg bhipy b

Generation

® Tractable joint likelihood.

® Captures essential ingredients of parton shower generators in full physics simulations.
® |Implements an analogue to a parton shower (no hadronization effects).

® Python implementation with few software dependencies.

Inference

® Marginalize over showering histories (binary trees).
® E.g.tuning of simulation parameters (PYTHIA TUNES) to optimize a fit to the data.


https://github.com/SebastianMacaluso/ToyJetsShower
https://github.com/SebastianMacaluso/ToyJetsShower
https://github.com/SebastianMacaluso/ToyJetsShower
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Model description £

Recursive algorithm to generate a binary tree with jet constituents as the leaves.
Showering process: binary splittings + stopping rule.

Algorithm 1: Toy Parton Shower Generator

1 function NodeProcessing (p4, tp, teut, A, tree)
Input : parent momentum p,. parent mass squared t,. cut-off mass squared
Features p P Pps P q ps q

teut, rate for the exponential distribution A, binary tree tree

2 Add parent node to tree.

® Momentum conservation. 3 ift, > tcy then
e Runnin g of the splittin g s cale. 4 Sample t;, and ti from the decaying exponential distribution.

Sample a unit vector from a uniform distribution over the 2-sphere.

ot

6 Compute the 2-body decay of the parent node in the parent rest frame.
7 Apply a Lorentz boost to the lab frame to each child.
Facilitates research with: 8 NodeProcessing (ph, tL, teut, A, tree)
9 NodeProcessing (pg', tR, teut, A, tree)
® Probabilistic programming : \ -
b~ N ) = —— At tr~ f(HA te 1) = — e WV
’ 1 — e tp L —e ™ (Vip — ViL)?

e Differentiable programming

® Dynamic programmin
Y PrO8 2 The model keeps track of the augmented

® Variational inference data based on a PYRO implementation.

Deep Universal Probabilistic Programming


http://pyro.ai

Jet Reconstruction: Generalized kt clustering algorithms

NYU

¢ |dea: sequentially cluster jet constituents aiming to

recover the showering history.
® Bottom-up (agglomerative) clustering.
® Merge closest pair based on a distance measure.

® Intuitively, particles with smaller d;; have a greater
likelihood to have come from a common parent.

kt-like clustering algorithms use a heuristic, with
no explicit connection to the generative model.

AR?
RQ

ARG = (yi — ;)" + (¢i — ¢5)°

4y = min(p?®, pie)

a = 11,0, —1} specifies the the kt,
Cambridge/Aachen and anti-kt algorithms.

The anti-k; jet clustering algorithm

Matteo Cacciari (Paris, LPTHE), Gavin P. Salam (Paris, LPTHE), Gregory Soyez (Brookhaven) (Feb,
2008)

Published in: JHEP 04 (2008) 063 - e-Print: 0802.1189 [hep-ph]

pdf ¢ DOI [= cite 50 8,011 citations

FastJet User Manual

Matteo Cacciari (Paris, LPTHE and Diderot U., Paris), Gavin P. Salam (CERN and Princeton U. and Paris,
LPTHE), Gregory Soyez (Saclay, SPhT) (Nov, 2011)

Published in: Eur.Phys.J.C 72 (2012) 1896 - e-Print: 1111.6097 [hep-ph]

pdf ¢ DOI [= cite SX 4,168 citations




NYU

https://github.com/
SebastianMacaluso/StandardHC

Improving over sequential (agglomerative) clustering

® |n the probabilistic language, generalized kt algorithms are greedy. Greedy algorithms are analogue to playing
chess only thinking one move at a time.

Straightforward improvements:
Use the splitting likelihood encoded in the generative model
instead of heuristics.
Splitting likelihood gives a natural way to score the combination of Beam Search: keeps multiple possible
multiple clusterings, i.e. their product. This allows to explore other clusterings in memory before choosing
algorithms, e.g. beam search. the showering history.

Z = argmax, p(z| x, 0)

Beam Search ky
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https://github.com/SebastianMacaluso/StandardHC
https://github.com/SebastianMacaluso/StandardHC
https://github.com/SebastianMacaluso/VisualizeBinaryTrees

Can we find the exact ML showering history or sum over all of them? NYE

We aim to invert the process probabilistically #of Approx. #
leaves of trees
4 15
® Reconstructing the showering history is like inverting the O 100
generative model. ! 10K
9 2 M
e , : 11 600 M
® The number of clustering histories is enormous! It grows like 150 0300
(2N-3)!! (times 21 ~Y) permutations), with N the number of jet
constituents. FN FN N
dodd dved v
® Traditional jet reconstruction algorithms don’t use the //\ /<\. //\ /<\‘
Foud dobh Gobb &

probability model directly.

//\ /< A A
® We use the likelihood of the showering history as the Ay A \' o \' o \'

optimization objective. s \.\, e \,\, e \,\, \.

The fifteen different rooted binary trees (with
unordered children) on a set of four labeled leaves,
illustrating 15 = (2 x 4 — 3)!! (see article text).

https://en.wikipedia.org/wiki/Double_factorial

11



: : : AISTATS 2021 [Greenberg, Macaluso, Monath, [k@l NYU
H |erarCh|Cal CIUSter Tre"Is Cranmer, McCallum, et al ’20, arXiv: 2002.1 1661]

We connected with Andrew
® New data structure to efficiently consider every possible hierarchical clustering. McCallum’s group at UMass

- Exact MAP showering history ArgMax, p(z\m, 6’)

Craig Greenberg  Nicholas Monath

- Marginal likelihood p(x|0) (sum of the likelihood of all the clustering histories).
https://github.com/

SebastianMacaluso/ClusterTrellis

Most meaningful, though we typically focus on the ML history.
See Matthew Drnevich and Lauren Greenspan’s talks for implementation examples.

® Model needs to be defined in terms of the product of pairwise splittings:

with o(X[H) = ||  ©(Xz, Xg)

X, XRr ESibS(H)

Z(X) = Z P(X|H), Marginal likelihood

12



Trellis Structure

® We represent each set of elements as a node in the trellis.

® There are 2IXI nodes for a full trellis, but the number of trees
grows super-exponentially faster.

® |t allows to run a dynamic programming algorithm to compute
the marginal likelihood (over all possible clusterings) and the
exact maximum likelihood hierarchy.

Computation using Trellis - O(3N) << O((2N-3)!!)

Z({a, b, ¢, d}) =¢({a,b, ¢}, {d}) - Z({a,b,¢}) - Z({d}) + ¥({a, b, d}, {c}) - Z({a,b,d}) - Z({c})
Y({a,c,d}, {b}) - Z({a,¢,d}) - Z({b}) + ¥({b, ¢, d}, {a}) - Z({b, ¢, d}) - Z({a})
Y({a, b}, {c,d}) -
Y({a,d}, {b,c}) -

Z({a,d}) - Z({b,c})
Tree Potential is Partition Function is

Froduction of Sum of Tree Potentials

Sibling Potentials ¢( ) . ¢() + . . . .
, 66 @G

@) (©) ) (@

Z({a,b,c}) = v¥({a, b}, {c}) - Z({a,b}) -
+¢({a,c}, {b}) - Z({a,c}) - {b})
+¢({b,c}, {a}) - Z({b,c}) - Z({a})

(@) (@) () (@)

Recursive Computation
Z({a,b) - Z({e,d}) + v({a,c}, {b,d}) - Z({a,c}) - Z({b,d}) Of Z using Memoization

S

>

Complexity

— —_ —_ —_— py py g
o o o o < = =
(%) @) ~J \O [— (S [9)

[
<

Sleele
OOOOE
OOOE
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—— #of trees = (2N — 3)!!
Trellis complexity &'(3V)

/ .

4

Number of elements N

14
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Sparse Hierarchical Cluster Trellis 2

® Despite efficiency, the full trellis still grows exponentially.

® However, we can control complexity by building a sparse trellis with
some nodes removed; we consider a fraction of hierarchies from

the total of (2 N - 3)!!.

® Most histories likelihood is negligible compared to the maximum

likelihood history (MAP tree). @@@@

® One can also construct a sparse trellis from samples (e.g., ground
truth from a simulator, greedy, or beam search) or randomly sample
pairwise splittings.

14



Posterior distribution - Sampling procedure by

i
® The trellis encodes a distribution over all possible trees. 1.751 ~~~ Ground Truth :
¢  Sampled :
: : .. : 1.501 mmm Expected :
® Traversing the trellis top-bottom is similar to running the |
generative model. 1257 :
— |
= 1.00 |
® The trellis enables to sample histories weighted by their likelihood B i
from the true posterior distribution conditioned on a set of leaves | '
(jet constituents) without enumerating all possible clusterings. 0.50-
25-
o) _ P(zlz,0) p(2|0) -
p(Z‘ZC, ) o (ZC‘H) 0.00-
p Y36 —34 —32 —30

¢ =log p(x,H)
Event Generation for events with large jet multiplicity

During simulations, when implementing the CKKW-L matching algorithm, parton final states need to be reweighted
with the corresponding Sudakov form factors of each history.

Trellis could be extended to consider 2 = 3 splittings (currently based on binary trees, | = 2 splittings); could make

feasible the implementation of CKKWV-L to a higher jet multiplicity.
15



Hierarchical Clustering as a Markov Decision Process

We explored the use of Reinforcement Learning

® The state space $ is given by all possible particle sets at any given
point during the clustering process.

® The actions A are the choice of two particles to be merged.
® The state transitions P are deterministic and update 2 to2¢—1
® The rewards R are the splitting probabilities.

® The MDP is episodic and terminates when only a single particle is
left.

We implement Monte Carlo Tree Search (MCTS) and
Imitation learning / Behavioral Cloning (BC).

ao

S
37“2

NYU

Brehmer, Macaluso, Pappadopulo,
Cranmer [arXiv:2011.08191]

NeurlPS 2020 ML4Physical Sciences
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A* search + trellis UAI 2021 [Greenberg, Macaluso, Monath, Cranmer, McCallum, et al "21]

Min-Heap — ) cYo
Over Child Pairs (2 cflo

Store a separate heap =
at each node. {a,b,c,de}
- \
{a,b,c}

{a,b,e}
@ @ ) - (i) - @ @

{c,d,e}

We proposed A* search on the trellis to find the MLE hierarchy.

Best-first search algorithm that reframes clustering as search.

Based on a heuristic to determine the most promising path.

Trellis compactly encodes states in the search space and allows a top-down exploration.
Compactly represents the search frontier as nested priority queues.
Approximate version based on a sparse trellis and/or limiting the number of trees explored.

Craig Greenberg  Nicholas Monath

Partial Hierarchical Clustering State

[
{a,b,c,d,e}

[
@ @ (l{a,b,e}) ({c.d.e})

@y aclladl... @ @ @

Leaf nodes with
un-initialized heaps (m m )

to be explored next.




Comparison for maximum likelihood showering history NYU

https://github.com/SebastianMacaluso/HCmanager

® We find the exact maximum likelihood tree for up to |6 jet constituents.

® Our approx. algorithms greatly improve over greedy and beam search baselines.

Greedy ~ kt-like

A~ N O-
3 0t 3
() *, D
GL) *t 9 _20_
¢ —1- \'Y O # of Approx. #
'®) ® ok O
+ § ‘ E leaves of trees
:1%) 2 - > —401 - 4 15
L \ = Lower is better! 5 100
= —3 Greedy ° S —60{ -
o \ o '~ 7 10 K
o, Beam Search o .
@) — 4 \ @) | \. 9 2 M
O S E 9 "N 11 600 M
X . . .
= _g| =™ Approx.f\ 'S = 00 Greedy N 150 10300
8 Exact A Y 8 Beam Search N
' _64 ==*= Exact Trellis N —a = Approx. A" N,
—120 k
10 20 30 80 100 120 140
Number of elements Number of elements
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https://github.com/SebastianMacaluso/HCmanager

W
PrObabiliStiC Prog ramming [Drnevich, Cranmer, Baydin, Macaluso, vCHEP 2021] NYU

Ginkgo + PyProb Test
® Generating sufficient background in signal-like tails is hard, Lo pior

e.g. background for boosted jet taggers. posterior

- == condition bound
- == condition bound

® Monte Carlo parton showers sample jets through random 08 -
number generators.

o
(o)}

® Probabilistic programming offers a way to hijack the random
number generators and sample from this complicated region
of phase space, e.g. importance sampling.

Normalized Bin Count

o
I

® Applied to Sherpa

0.2 -

NeurlPS 2019 [Baydin, Heinrich, Louppe, Cranmer, et al, arXiv:1807.07706]
SC 2019 [Baydin, Louppe, Cranmer et al, arXiv:1907.03382]

0.0

0 5 10 15 20 25 0 35 40

Number of Leaves
Allows to efﬁciently sample the tails of Importance sampling on Ginkgo jets using PyProb and
backgrounds in signal-rich regions of phase space. conditioning on the number of constituents.

19
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Final remarks

® Ultimately it would be very powerful if we could unify generation (the simulation / forward model) and inference
(MC tuning, jet tagging, etc.). To do this, we need first to reframe jet physics in probabilistic terms.

® |ntroduced a simplified generative model to facilitate research into new computational techniques for jet physics.

® New implementations of likelihood-based clustering algorithms: greedy and beam search that provide a principled
alternative to the generalized £ clustering algorithms.

® Hierarchical cluster trellis and A* algorithms to exactly obtain the maximum likelihood showering history
(approximate versions greatly improve over baselines).Also, applications in cancer genomics and possibly
phylogenetic trees.

® New implementations of reinforcement learning based algorithms such as MCTS for jet clustering.

® Cluster trellis allows to marginalize and sample from the true posterior distribution of showering histories which
could ameliorate bottlenecks in physics simulations with large jet multiplicity.

® Probabilistic programming allows to efficiently sample the tails of backgrounds in signal-rich regions of phase
space.

Thanks for your attention! 20
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