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simulating jet physics

• We have generators which can simulate 
parton showers

• e.g. Pythia, Sherpa, Herwig, etc.

• They depend on a set of physically 
motivated parameters

• These determine the distribution of final 
state particles

• The detector only observes the final state 
particles

• The evolution of the shower is of interest 
for reconstruction

• It also depends on the shower parameters

Parton Shower Models 
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Evolution of the shower is latent

We only observe the particles
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• Other ML related work based on 
surrogates for the intractable likelihood

• Adversarial Variational Optimization

• Non-differentiable simulator; GAN-like NN 
classifier

• AISTATS 2019 https://arxiv.org/abs/1707.07113

• Louppe, Hermans, Cranmer

• Dctr

• NN classifier as likelihood ratio surrogate; 
differentiable optimization

• Phys. Rev. D 2020 
https://inspirehep.net/literature/1744598

• Andreassen, Nachman
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Monte Carlo Tuning
• Traditional approach:

• Generate data using parton shower models

• Make 1D projections of observables

• Tune parameters by matching observables with data

• Professor w/ Rivet

• Buckley, et. al. https://arxiv.org/abs/0907.2973

• Inefficient and wastes information

• Traditional approaches don’t have access to a 
likelihood 𝑝 𝑑𝑎𝑡𝑎 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

• Shower Deconstruction
• Tractable likelihood, but brute force marginalization 

(scalability issues); focused on tagging not tuning

• Phys. Rev. D 2011 https://inspirehep.net/literature/889900

• Soper, Spannowsky

https://arxiv.org/abs/1707.07113
https://inspirehep.net/literature/1744598
https://arxiv.org/abs/0907.2973
https://inspirehep.net/literature/889900
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maximum likelihood estimation

• Ideally, we would use the likelihood to fit 
the model to observed data

• Model parameters can be inferred through 
stastical estimation, e.g. MLE or Bayesian 
methods

• These use the full information of the model 
and are statistically efficient

• Ginkgo combined with the Trellis algorithm 
allows us to directly compute the likelihood 
for inference

Statistical Framing of  Tuning
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𝑝 𝜃)
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a toy parton shower simulator

• Ginkgo uses a recursive algorithm to 
generate a binary tree where the leaves are 
the jet constituents

• Implements some key features needed for 
physics simulator:

• Momentum conservation

• A running splitting scale

• Model parameters that can be tuned

• Threshold energy for stopping (like 
confinement)

• Decay rate (jet-type dependent)

Ginkgo Refresher
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Kyle Cranmer, Sebastian Macaluso, Duccio

Pappadopulo

https://github.com/SebastianMacaluso/ginkgo

https://github.com/SebastianMacaluso/ginkgo
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Ginkgo Jets

Jet MultiplicityPhi vs Eta
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constructing a tractable likelihood

• The evolution at every step depends only 
on the parent 4-momentum

• If 𝑡 < 𝑡𝑐𝑢𝑡 then stop, where 𝑡 is the 
invariant mass squared

• Asymmetric under 

• Particles are randomly permuted after 
splitting 

Ginkgo Generative Process
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from Sebastian Macaluso
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constructing a tractable likelihood

• The joint likelihood is factorized in an autoregressive form, 
depending on the particular tree, 𝑧

• In order to evaluate the probability of the splitting, we need 
to reconstruct the parent from the children

• Reconstruction probability is symmetrized

•
1

2
𝑓 𝑡𝐿, 𝑡𝑅 𝜆, 𝑡𝑃) + 𝑓 𝑡𝑅 , 𝑡𝐿 𝜆, 𝑡𝑃)

Ginkgo Likelihood
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how to integrate out the showering history

• Need to be able to evaluate this on 
observed data

• This also allows us to compute the exact 
likelihood ratio
• See Lauren Greenspan’s talk next!

• We must integrate out the showering 
history

• Typically, this is an intractable problem and 
where other approaches fail
• Grows as (2N-3)!!

• Some machine learning approaches that 
approximate the marginal likelihood

The Marginal Likelihood

9

? known
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how to integrate out the showering history

• The Hierarchical Cluster Trellis algorithm 
empowers this marginalization

• This is a model-independent algorithm for 
marginalizing over all binary tree histories

• Ginkgo is a perfect test case

• There are 2𝑁 − 3 ‼ × 2𝑁−1 possible 
binary trees including permuations

• Trellis reduces the computational 
complexity from brute force

Hierarchical Cluster Trellis
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# Leaves 4 7 9 12

# Trees 120 ~665k ~520M ~28T

from Sebastian Macalusohttps://github.com/SebastianMacaluso/ClusterTrellis

https://github.com/SebastianMacaluso/ClusterTrellis
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Results
Tuning using Maximum Likelihood 
Estimation 
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• Generated a dataset of 100k jets using 
Ginkgo

• Parameters fixed to 𝜆 = 2.8, 𝑡𝑐𝑢𝑡 = 30 𝐺𝑒𝑉2, 
with | റ𝑝𝑗𝑒𝑡| = 400 𝐺𝑒𝑉 and 𝑚𝑗𝑒𝑡 = 30 𝐺𝑒𝑉

• Small number of jet constituents for proof of 
concept

Observed Dataset
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reweighting-based closure

• With the likelihood we can reweight the 
distribution from one value of 𝜆 to another

• This reveals a normalization problem with 
the likelihood, which we have not been able 
to track down yet

• This leads to a bias in the MLE

• But we can measure

which should be unity

• Correct the likelihood by 1/𝑓

Subtle Normalization Issue

13
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tuning procedure

• A 1D grid search is performed for 
optimizing 𝜆, the splitting rate

• Includes the normalization correction

Maximum Likelihood Estimate
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Maximum Likelihood Estimate

Distribution of the 𝝌𝟐 test statisticDistribution of the MLE
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• Explored showering parameter tuning on 
Ginkgo, which has a tractable likelihood

• Implemented parameter tuning using the 
full information of the simulator model via 
maximum likelihood estimation

• The Trellis algorithm enabled marginalizing 
over possible jet clusterings

• Generalizes well to other probabilistic 
showering models

• To the best of our knowledge, this is the 
first demonstration of tuning the shower 
model using the full likelihood marginalized 
over all showering histories

Summary
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Probabilistic

Parton Shower

Cluster Trellis

Tuning with 

Marginal Likelihood



Thank 
You!

Some Github links

• Ginkgo:
https://github.com/SebastianMacalus
o/ginkgo

• Cluster Trellis: 
https://github.com/SebastianMacalus
o/ClusterTrellis

• Ginkgo Inference: 
https://github.com/mdkdrnevich/gink
go-inference

https://github.com/SebastianMacaluso/ginkgo
https://github.com/SebastianMacaluso/ClusterTrellis
https://github.com/mdkdrnevich/ginkgo-inference
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Backup
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Ginkgo Likelihood Math Written Out
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1

2
𝑓 𝑡𝐿, 𝑡𝑅 𝜆, 𝑡𝑃) + 𝑓 𝑡𝑅 , 𝑡𝐿 𝜆, 𝑡𝑃)
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correcting the MLE

• The MLE is initially biased due to something 
missing in the Ginkgo likelihood

• We correct for this bias by introducing a 
reweighting procedure

• Build a simple approximation for

• Define an iterative correction

• Fast and effective

Iterative Reweighting Procedure
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Likelihood Correction on Observed Data

Iterative Reweighting Procedure
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Iterative Reweighting Procedure

After 2 IterationsBefore
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MLE Distributions

Reweighted MLEMarginal MLE
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𝝌𝟐 Test Statistic Distributions

Reweighted 𝝌𝟐Test StatisticMarginal 𝝌𝟐Test Statistic


