Pushing the Limit of Jet Tagging With Graph Neural Networks

Huilin Qu (CERN) ML4Jets2021 July 7, 2021

Bag of Tricks for a Better Jet Tagger

INTRODUCTION

Sci Post

- Jet tagging
 - powerful hammer in experimentalists' toolbox
 - fun playground for ML enthusiasts
 - Graph neural networks (GNNs) have shown lots of potential for jet tagging
 - top tagging benchmark (2019)
 - GNN-based ParticleNet [1902.08570] achieves the best performance
 - since then:
 - ABCNet [2001.05311], Point Cloud Transformer [2102.05073]: better performance in quark/gluon tagging
 - LundNet [2012.08526]: surpass ParticleNet in top tagging
 - now: can we do even better? and how?

"Top Tagging Landscape"

G. Kasieczka et al. [<u>1902.09914</u>]

RECAP: *PARTICLENET*

- ParticleNet
 - jet treated as a permutation-invariant point cloud
 - customized graph neural network architecture for jet tagging based on Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829]
 - Key building block: EdgeConv
 - treating a point cloud as a graph: each point is a vertex
 - for each point, a local patch is defined by finding its k-nearest neighbors
 - designing a permutation-invariant "convolution" function
 - learn an "edge feature" for each center-neighbor pair: $e_{ii} = MLP(x_i, x_i)$
 - same MLP for all neighbor points, and all center points, for symmetry
 - aggregate the edge features in a symmetric way: $x_i' = mean_i e_{ij}$

PARTICLENEXT: PAIRWISE FEATURES

- ParticleNeXt: next-generation of ParticleNet, for better performance
- The first enhancement is the addition of (explicit) pairwise features on the edges

$$e_{ij} = MLP(x_i, x_j)$$

$$\boldsymbol{e}_{ij} = \mathsf{MLP}(\boldsymbol{x}_i, \boldsymbol{x}_j, \boldsymbol{x}_{ij})$$

• Examples of pairwise features: $\Delta_{ij}^2 \equiv (y_i - y_j)^2 + (\phi_i - \phi_j)^2, \quad m^2 \equiv (p_i + p_j)^2,$ $k_T \equiv \min(p_{T,i}, p_{T,j}) \Delta_{ij}, \quad z \equiv \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}}$ (use the logarithm to improve stability of the training)

PARTICLENEXT: ATTENTIVE POOLING

- Use attention-based pooling to increase the expressive power
 - for both the local neighborhood pooling, and the final global pooling

PARTICLENEXT: MULTI-SCALE AGGREGATION

- Introduce multi-scale aggregation to better capture both short- and long-range correlations
 - perform local aggregation for the 4, 8, 16 and 32 nearest neighbors (with different attentive pooling) and combine the 4 aggregated representations with a MLP
 - on the other hand: remove dynamic kNN (based on learned features), i.e., use only kNN in $\eta \phi$ space, to reduce computational cost
 - in this case the kNN needs to be performed only once, and then the graph connectivity is fixed

DATASET

- A new jet tagging dataset was generated for the development of ParticleNeXt
 - all events are generated with MadGraph5_aMC@NLO v3.1.1 at LO and interfaced with Pythia v8.245 for parton shower (w/ the default tune and MPI enabled)
 - fast detector simulation w/ Delphes v3.5.0, using the CMS card
 - tracking resolution parametrization based on the CMS Run1 performance [1405.6569]
 - jets clustered from the Delphes e-flow objects using the anti-kt algorithm w/ R=0.8
 - = only consider jets w/ 500 < $p_{\rm T}$ 1000 GeV, and $|\eta|$ < 2
 - input features for each jet constituent particle: 4-momenta, PID, impact parameters and errors
 - top-tagging benchmark:
 - Top quark jets: $pp \rightarrow t\overline{t} \ (t \rightarrow bW, W \rightarrow qq')$
 - truth matching criteria: $\Delta R(jet, q) < 0.8$ for all three quarks from hadronic top decay
 - QCD jets: $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + j (j = u, d, s, c, b, g)$
 - Higgs-tagging benchmark:
 - Higgs boson jets: $pp \rightarrow hh \ (h \rightarrow b\bar{b})$
 - truth matching criteria: $\Delta R(jet, b) < 0.8$ for both quarks from the Higgs decay
 - QCD jets: $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + j (j = u, d, s, c, b, g)$

PERFORMANCE: TOP TAGGING

- Training/validation/test splitting:
 - 1.6M / 0.4M / 2M
- Training repeated for 3 times starting from randomly initialized weights
 - the median-accuracy training is reported, and the standard deviation of the 3 trainings is quoted as the uncertainty
- Significant improvement in background rejection w/ ParticleNeXt
 - ~50% higher BKG rejection (@ ϵ_S = 70%)
 - computational cost still under control

	Accuracy	AUC	$1/\varepsilon_b$ at		Parameters	Inference time		Training time
			$\varepsilon_s = 70\%$	$\varepsilon_s = 50\%$		(CPU)	(GPU)	(GPU)
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425	366k	23 ms	$0.30 \mathrm{\ ms}$	1.0 ms
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309	560k	$30 \mathrm{ms}$	$0.54~\mathrm{ms}$	$1.7 \mathrm{ms}$

Ablation Study

- Investigated the effects of the new features of ParticleNeXt by removing each of them and repeat the training
 - all the new features contribute
 - ~20% loss in BKG rejection if any of the three is removed

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	$\bf 8621 \pm 309$
ParticleNeXt (w/o pairwise features)	0.980	0.9980	1695 ± 70	7353 ± 193
ParticleNeXt (w/o attentive pooling)	0.980	0.9981	1689 ± 72	7463 ± 696
ParticleNeXt (w/o multi-scale aggregation)	0.981	0.9980	1664 ± 57	7407 ± 193

Model Ensembling

- Model ensembling still helps, even for the new ParticleNeXt
 - ensembling method: average the DNN outputs from the 3 independent trainings
 - ~30% improvement for ParticleNeXt with the 3-model ensemble
 - ~15% for ParticleNet

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309
ParticleNet (average ensemble)	0.980	0.9980	1558	6897
ParticleNeXt (average ensemble)	0.982	0.9984	2558	11494

EXTENDED TRAINING DATASET

Training on a larger dataset

training/validation/test splitting:

10M / 1M / 2M

- i.e., 5x more jets for training compared to the baseline dataset
- Substantial gain in performance
 - ~70% higher BKG rejection (@ ϵ_S = 70%)
- *Question:* Can we encode more physics into the network to make the training more data-efficient?

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309
ParticleNeXt (extended dataset)	0.983	0.9986	3378	15873

PERFORMANCE: HIGGS TAGGING

- Baseline dataset:
 - training/validation/test splitting:
 - 1.6M / 0.4M / 2M
- Extended dataset:
 - training/validation/test splitting:
 - 10M / 1M / 2M
- Consistent improvement for ParticleNeXt in Higgs tagging as well
 - ~30% higher BKG rejection than ParticleNet
 - another 30% when trained on the extended dataset

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.983	0.9983	1562 ± 24	5128 ± 237
ParticleNeXt	0.985	0.9986	2045 ± 29	7143 ± 349
ParticleNeXt (extended dataset)	0.986	0.9989	2770	13699

PERFORMANCE ON PUBLIC BENCHMARKS

– Top tagging landscape

	AUC	Acc	1/	$\epsilon_B (\epsilon_S = 0$.3)	#Param
			single	mean	median	
CNN [16]	0.981	0.930	914±14	$995{\pm}15$	975 ± 18	610k
ResNeXt $[30]$	0.984	0.936	1122 ± 47	1270 ± 28	1286 ± 31	1.46M
TopoDNN [18]	0.972	0.916	295 ± 5	382 ± 5	378 ± 8	59k
Multi-body N -subjettiness 6 [24]	0.979	0.922	792 ± 18	$798{\pm}12$	$808{\pm}13$	57k
Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
TreeNiN [43]	0.982	0.933	1025 ± 11	1202 ± 23	1188 ± 24	34k
P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
ParticleNet [47]	0.985	0.938	1298 ± 46	$1412{\pm}45$	$1393 {\pm} 41$	498k
LBN [19]	0.981	0.931	836±17	$859{\pm}67$	$966{\pm}20$	705k
LoLa [22]	0.980	0.929	722 ± 17	$768{\pm}11$	765 ± 11	127k
Energy Flow Polynomials [21]	0.980	0.932	384			1k
Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$	82k
Particle Flow Network [23]	0.982	0.932	891±18	1063 ± 21	1052 ± 29	82k
GoaT	0.985	0.939	1368±140		$1549{\pm}208$	35k
ParticleNet-Lite	0.984	0.937	1262±49			26k
ParticleNet	0.986	0.940	1615±93			366k
ParticleNeXt	0.987	0.942	1923±48			560k

G. Kasieczka et al.
[<u>1902.09914]</u>

Quark/gluon tagging

	Acc	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
ResNeXt-50 [16]	0.821	0.9060	30.9	80.8
P-CNN [16]	0.827	0.9002	34.7	91.0
PFN [32]	-	0.9005	$34.7 {\pm} 0.4$	-
ParticleNet-Lite [16]	0.835	0.9079	37.1	94.5
ParticleNet $[16]$	0.840	0.9116	$39.8 {\pm} 0.2$	98.6 ± 1.3
ABCNet [17]	0.840	0.9126	$42.6 {\pm} 0.4$	$118.4{\pm}1.5$
SPCT	0.824	0.899	$34.4 {\pm} 0.4$	100.3 ± 1.5
PCT	0.841	0.9140	$43.3{\pm}0.7$	117.5 ± 1.4
ParticleNeXt	0.841	0.9129	41±0.1	105±1.0

SUMMARY & OUTLOOK

ParticleNeXt

- new GNN architecture for jet tagging
- enhanced expressiveness w/ several new features in the network design
- significant performance improvement as demonstrated in the top and Higgs tagging benchmarks
- paper, code and dataset to come soon stay tuned!
- Still, performance can be further improved via:
- model ensembling
- extending training dataset
- Models that better incorporate physically-motivated inductive biases are likely to bring better data-efficiency, and to improve the performance as well

INPUT FEATURES

Variable	Definition
$\Delta \eta$	difference in pseudorapidity between the particle and the jet axis
$\Delta \phi$	difference in azimuthal angle between the particle and the jet axis
$\log p_T$	logarithm of the particle's p_T
$\log E$	logarithm of the particle's energy
$\log \frac{p_T}{p_T(\text{jet})}$	logarithm of the particle's p_T relative to the jet p_T
$\log \frac{1-\frac{E}{E}}{E(\text{jet})}$	logarithm of the particle's energy relative to the jet energy
$\Delta \ddot{R}$	angular separation between the particle and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$
\overline{q}	electric charge of the particle
isElectron	if the particle is an electron
isMuon	if the particle is a muon
isChargedHadron	if the particle is a charged hadron
isNeutralHadron	if the particle is a neutral hadron
isPhoton	if the particle is a photon
$\tanh d_0$	hyperbolic tangent of the transverse impact parameter of the track (in units of mm)
$\tanh d_z$	hyperbolic tangent of the longitudinal impact parameter of the track (in units of mm)
σ_{d_0}	error of the transverse impact parameter
σ_{d_z}	error of the longitudinal impact parameter