Pushing the Limit of Jet Tagging
With Graph Neural Networks
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INTRODUCTION

Jet tagging

powerful hammer in experimentalists’ toolbox “Top Tagging Landscape”

fun playground for ML enthusiasts

—— ParticleNet
Graph neural networks (GNNs) have shown lots of Tl Rt
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ABCNet [2001.05311], Point Cloud Transformer
[2102.05073]: better performance in quark/gluon
tagging Lot
LundNet [2012.08526]: surpass ParticleNet in top IR
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G. Kasieczka et al.
now: can we do even better? and how? [1202.09914]



https://arxiv.org/abs/1902.09914

RECAP: PARTICLENET

ParticleNet
jet treated as a permutation-invariant point cloud

customized graph neural network architecture for jet tagging based on
Dynamic Graph CNN [Y.Wang et al., arXiv:1801.07829]

Key building block: EdgeConv
treating a point cloud as a graph: each point is a vertex
for each point, a local patch is defined by finding its k-nearest neighbors
designing a permutation-invariant ‘convolution” function
learn an “edge feature” for each center-neighbor pair: ej;= MLP(xi, X))

same MLP for all neighbor points,and all center points, for symmetry

aggregate the edge features in a symmetric way: x;’ = mean,; ej

EdgeConv can be stacked to form a deep network

learning both local and global structures, in a hierarchical way

EdgeConv block

ParticleNet architecture
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PARTICLENEXT: PAIRWISE FEATURES

ParticleNeXt: next-generation of ParticleNet, for better performance

The first enhancement is the addition of (explicit) pairwise features on the edges

ParticleNet ParticleNeXt
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'Qij — MLP(Xi, X]) 'Qij — MLP(Xl', Xj, Xl:]')

Examples of pairwise features:
Aj= (- y]')z + (¢, — ¢j)2, m* = (p; +PJ-)2,
min(pr,;, pr;)

Pri+ D1
(use the logarithm to improve stability of the training)

kr = min(py;, pr;) B 2




PARTICLENEXT: ATTENTIVE POOLING

Use attention-based pooling to increase the expressive power

for both the local neighborhood pooling, and the final global pooling

ParticleNet ParticleNeXt
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Wi = Sof/'Maxj(af‘fmlj)

2; = 2wy 2;j)



PARTICLENEXT: MULTI-SCALE AGGREGATION

Introduce multi-scale aggregation to better capture both short- and long-range correlations

perform local aggregation for the 4, 8,16 and 32 nearest neighbors (with different attentive
pooling) and combine the 4 aggregated representations with a MLP

on the other hand: remove dynamic kNN (based on learned features), i.e.,use only kNN in n—¢
space, to reduce computational cost

in this case the kNN needs to be performed only once, and then the graph connectivity is fixed

ParticleNet ParticleNeXt
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DATASET

A new jet tagging dataset was generated for the development of ParticleNeXt

all events are generated with MadGraph5 aMC@NLO v3.1.1 at LO and interfaced with Pythia
v8.245 for parton shower (w/ the default tune and MPI enabled)

fast detector simulation w/ Delphes v3.5.0, using the CMS card

tracking resolution parametrization based on the CMS Runl performance [1405.6569]
jets clustered from the Delphes e-flow objects using the anti-kt algorithm w/ R=0.8
only consider jets w/ 500 < pr 1000 GeV,and In| < 2

input features for each jet constituent particle: 4-momenta, PID, impact parameters and errors
top-tagging benchmark:

Top quark jets: pp — tf (t > bW, W — qq’)
truth matching criteria: AR(jet, q) < 0.8 for all three quarks from hadronic top decay

QCD jets: pp — Z(—vr)+j(j =u,d,s,c,b, g)
Higgs-tagging benchmark:

Higgs boson jets: pp — hh (h — bb)
truth matching criteria: AR(jet, b) < 0.8 for both quarks from the Higgs decay

QCD jets:pp — Z(—vD)+j(j =u,d,s,c,b, g)



PERFORMANCE: TOP T AGGING
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© — ParticleNet (AUC - 0.9879) | Training/validation/test splitting:

ParticleNeXt (AUC = 0.9982) 7
1.6M /0.4M / 2M

Training repeated for 3 times starting
from randomly initialized weights
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the median-accuracy training is

1072 reported, and the standard deviation of
the 3 trainings is quoted as the
uncertainty

10°F Significant improvement in background

* rejection w/ ParticleNeXt
~50% higher BKG rejection (@¢€g = 70%)
10—4 A
0.0 0.2 0.4 0.6 0.8 1.0 , ,
Signal efficiency computational cost still under control
Accuracy AUC 1/ep at Parameters Inference time Training time
es =T0% &5 ="50% (CPU) (GPU) (GPU)
ParticleNet 0.980 0.9979  13424+4 6173 £425 366k 23ms  0.30 ms 1.0 ms

ParticleNeXt 0.981 0.9982 2008 75 8621 £ 309 560k 30 ms  0.54 ms 1.7 ms




ABLATION STUDY
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B —— ParticleNet (AUC = 0.9979)

i ParticleNeXt (AUC = 0.9982)

- --- ParticleNeXt (w/o pairwise features) (AUC = 0.9980)

- --- ParticleNeXt (w/o attentive pooling) (AUC = 0.9980)

--- ParticleNeXt (w/o multi-scale aggregation) (AUC = 0.9981)
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Investigated the effects of the new
features of ParticleNeXt by removing
each of them and repeat the training

all the new features contribute

~20% loss in BKG rejection if any of

1072F the three is removed
1073 =
10—4 I I I | ! ! ! | P ! | ! I I | I I I
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ep at 65 = 70% 1/ep at 5 = 50%
ParticleNet 0.980 0.9979 1342 +4 6173 £ 425
ParticleNeXt 0.981 0.9982 2008 £ 75 8621 + 309
ParticleNeXt (w/o pairwise features) 0.980 0.9980 1695 + 70 7353 + 193
ParticleNeXt (w/o attentive pooling) 0.980 0.9981 1689 + 72 7463 + 696
ParticleNeXt (w/o multi-scale aggregation) 0.981 0.9980 1664 £ 57 7407 4+ 193




MODEL ENSEMBLING

> 100 - 1 1 1 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 ] o o
o | — ParticleNet (AUC = 0.9979) : Model ensembling still helps, even for
D i ParticleNet (average ensemble) (AUC = 0.9980) ] .
o | — ParticleNeXt (AUC = 0.9982) : the new ParticleNeXt
q"'q:) - —-— ParticleNeXt (average ensemble) (AUC = 0.9984)
2401k - ensembling method: average the DNN
> - .
S outputs from the 3 independent
x | . .
S i trainings
m .
1021 ~30% improvement for ParticleNeXt
i with the 3-model ensemble
i ~15% for ParticleNet
1073 =
10—4 ! ] ] | ] ] ] | ] | ] ] ]
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ey at e = 70% 1/ep at €5 = 50%
ParticleNet 0.930 0.9979 1342 £ 4 6173 + 425
ParticleNeXt 0.981 0.9982 2008 + 75 8621 + 309
ParticleNet (average ensemble) 0.980 0.9980 1558 6897
ParticleNeXt (average ensemble) 0.982 0.9984 2558 11494




EXTENDED [RAINING DATASET
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— ParticleNet (AUC = 0.9979) ; Training on a larger dataset

ParticleNeXt (AUC = 0.9982)
------ ParticleNeXt (extended dataset) (AUC = 0.9986)

training/validation/test splitting:
1IOM/ 1M/ 2M

l.e., 5x more jets for training compared
to the baseline dataset
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1072}
Substantial gain in performance
~70% higher BKG rejection (@¢eg = 70%)
10_3? . .
: Question: Can we encode more physics
into the network to make the training
I e S more data-efficient?
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
Accuracy AUC 1/ep at e = 70% 1/ep at 5 = 50%
ParticleNet 0.980 0.9979 1342 +4 6173 + 425
ParticleNeXt 0.981 0.9982 2008 + 75 8621 + 309
ParticleNeXt (extended dataset) 0.983 0.9986 3378 15873




PERFORMANCE: HIGGS TAGGING
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—— ParticleNet (AUC = 0.9983)

ParticleNeXt (AUC = 0.9986)

ParticleNeXt (extended dataset) (AUC = 0.9989)
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Baseline dataset:
training/validation/test splitting:
1.eM /0.4M / 2M
Extended dataset:

training/validation/test splitting:

1072}
1OM /1M / 2M
Consistent improvement for ParticleNeXt
ro-sL in Higgs tagging as well
: ~30% higher BKG rejection than
ParticleNet
7 T | 1| 1 1 1 ) :
10783 05 > o5 53 0 another 30% when trained on the
Signal efficiency extended dataset
Accuracy AUC 1/ep at g5 = T0% 1/ep at g5 = 50%
ParticleNet 0.983 0.9933 1562 & 24 5128 + 237
ParticleNeXt 0.985 0.9986 2045 =+ 29 7143 + 349
ParticleNeXt (extended dataset) 0.986 0.9989 2770 13699




PERFORMANCE ON PUBLIC BENCHMARKS

AUC | Acc 1/ep (es = 0.3) #Param
single mean median
CNN [16] 0.981 | 0.930 | 914+14 995+15  975+18 | 610k G. Kasieczka et al.
ResNeXt [30] 0.984 | 0.936 | 1122447 1270428 1286431 | 1.46M [1902.09914]
TopoDNN [18] 0.972 | 0.916 29545 382+ 5 378 £ 8 59k
Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 | 792418 798412  808+13 57k
Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 | 867415 918420 926418 58k
TreeNiN [43] 0.982 | 0.933 | 1025+11 1202423  1188+24 34k
P-CNN 0.080 [ 0.930 | 732424 845413  834+14 348k
ParticleNet [47] 0.985 | 0.938 | 1298+46 1412445 1393+41 498k
LBN [19] 0.981 | 0.931 | 836+17 859467 96620 705k
LoLa [22] 0.980 | 0.929 | 722417 768+11  765+11 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Energy Flow Network [23] 0.979 | 0.927 | 633+£31 729413 72611 82k
Particle Flow Network [23] 0.982 | 0.932 | 891+18 1063+21 1052429 82k
GoaT | 0.985 | 0.939 | 13684140 15494208 | 35k
ParticleNet-Lite 0.984 0.937 1262+49 26k
ParticleNet 0986 0940 1615493 366k
ParticleNeXt 0987 0.942 1923+48 560k .
Quark/gluon tagging
Acc AUC 1/ep (es=0.5) 1/ep (es =0.3)
ResNeXt-50 [16] 0.821  0.9060 30.9 80.8
P-CNN [16] 0.827  0.9002 34.7 91.0
PFN [32] - 0.9005 34.740.4 -
ParticleNet-Lite [16] 0.835  0.9079 37.1 94.5
ParticleNet [16] 0.840  0.9116 39.80.2 98.6+1.3
ABCNet [17] 0.840  0.9126 42.60.4 118.4+1.5
SPCT 0.824  0.899 34.4£0.4 100.3+1.5
S : PCT 0.841 0.9140  43.3+0.7 117.5+1.4
V. Mikuni, F. Canelli :
[2102.05073] ParticleNeXt 0841 09129 4140.1 105+ 1.0



https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2102.05073

SUMMARY & OUTLOOK

ParticleNeXt
new GNN architecture for jet tagging
enhanced expressiveness w/ several new features in the network design

significant performance improvement as demonstrated in the top and Higgs tagging
benchmarks

paper, code and dataset to come soon — stay tuned!
Still, performance can be further improved via:

model ensembling

extending training dataset

Models that better incorporate physically-motivated inductive biases are likely to bring
better data-efficiency,and to improve the performance as well
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INPUT FEATURES

Variable Definition
An difference in pseudorapidity between the particle and the jet axis
A¢ difference in azimuthal angle between the particle and the jet axis
log pr logarithm of the particle’s pr
log & logarithm of the particle’s energy
log pr ?et) logarithm of the particle’s pp relative to the jet pr
log B(et) logarithm of the particle’s energy relative to the jet energy
AR angular separation between the particle and the jet axis (1/(An)2 + (A¢)?)
q electric charge of the particle
isElectron if the particle is an electron
isMuon if the particle is a muon
isChargedHadron if the particle is a charged hadron
isNeutralHadron if the particle is a neutral hadron
isPhoton if the particle is a photon
tanh d hyperbolic tangent of the transverse impact parameter of the track (in units of mm)
tanh d, hyperbolic tangent of the longitudinal impact parameter of the track (in units of mm)
Od, error of the transverse impact parameter
oF error of the longitudinal impact parameter

z




