

A W^{\pm} polarization analyzer from Deep Neural Networks

Taegyun Kim
Research collaborator: Adam Martin
Department of Physics, University of Notre Dame

arXiv:2102.05124

Theoretical Motivation

Massive vector boson final states

$$pp \to W^{\pm}W^{\mp}$$

$$pp \to W^{\pm}Z$$

$$pp \to ZZ$$

- Indirect approach of checking SM: polarization searches
 - Longitudinal vs. Transverse
- SM can predict polarization fraction
- Longitudinal polarization is sensitive to EWSB
- New physics can impact polarizations fractions. Ex.) new resonance, or higher dimensional operators (SMEFT)

W Polarization Measurement

- Leptonic tagging is done
 - lower branching ratio than hadronic state
 - neutrino reconstruction
- Can we do hadronic W tagging?
 - Extract correct boson jet
 - QCD effect washes out parton level information
 - Possible jet substructure information can be used to tag polarization
 - N-subjettiness (S. De, V. Rentala, W. Shepherd arXiv:2008.04318v1)
 - How does machine learning do?

W Polarization Measurement

- Leptonic tagging is done
 - lower branching ratio than hadronic state
 - neutrino reconstruction
- Can we do hadronic W tagging?
 - Extract correct boson jet
 - QCD effect washes out parton level information
 - Possible jet substructure information can be used to tag polarization
 - N-subjettiness (S. De, V. Rentala, W. Shepherd arXiv:2008.04318v1)
 - How does machine learning do?

W polarization

Decay of W

- Since W only interacts to the left handed particles, each polarization has distinct angular distribution (or, in lab frame, $(E_q-E_{\bar q})/\mid \overrightarrow{p}_W \mid$)
- Parton level distribution can be used as a reference point for the network optimization
- Due to the deviation, it is possible to measure polarization fraction for diboson final states

Higher dimensional operators and W/Z polarization

SMEFT extends the SM Lagrangian by gauge invariant higher dim (D>4) operators

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{D>4}^{\inf} \frac{1}{\Lambda^{D-4}} c_j^{(D)} \mathcal{O}_j^{(D)}$$

- W^{\pm}/Z can appear in two ways:
 - 1. $W^a_{\mu\nu} \to \text{Primarily transverse as } \epsilon^\mu_L W^a_{\mu\nu} \sim \frac{k^\mu}{m_{\nu\nu}} W^a_{\mu\nu} \approx 0$
 - 2. $D_uH \rightarrow$ Primarily longitudinal as Goldstone gets eaten

Relevant operators (SILH) for diboson final states

$$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^a$$

$$\mathcal{O}_{B} = \left(H^{\dagger} \sigma^{a} \overrightarrow{D}^{\mu} H\right) \partial^{\nu} B_{\mu\nu}$$

$$\mathcal{O}_{2W} = -\frac{1}{2}D^{\mu}W^{a}_{\mu\nu}D_{\rho}W^{a\rho\nu}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$$

We will focus on the boxed operators

$$\mathcal{O}_{HW} = ig \left(D^{\mu}H\right)^{\dagger} \sigma^{a} \left(D^{\nu}H\right) W_{\mu\nu}^{a} \qquad \mathcal{O}_{HW} = ig' \left(D^{\mu}H\right)^{\dagger} \left(D^{\nu}H\right) B_{\mu\nu}$$

$$\mathcal{O}_{HW} = ig' (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$$

Higher dimensional operators and W/Z polarization

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$$

- Operators above contribute to the cross section of $pp \to W^\pm Z$ but different impact on polarization breakdown
- Knowing polarization can better distinguish between effects
- For our analysis, we do not introduce full SMEFT operators for simplification of parameters
- Benchmark SMEFT Lagrangian : $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \frac{2 c_W}{m_W^2} \mathcal{O}_W + \frac{3! c_{3W} g^2}{m_W^2} \mathcal{O}_{3W}$

Convention from A. Alloul, B. Fuks, and V. Sanz, arXiv:1310.5150

• We will later predict longitudinal content of $pp o W^\pm(jj)Z(ll)$ for both SM and SMEFT cases

W Polarization Measurement

- Leptonic tagging is done
 - lower branching ratio than hadronic state
 - neutrino reconstruction
- Can we do hadronic W tagging?
 - Extract correct boson jet
 - QCD effect washes out parton level information
 - Possible jet substructure information can be used to tag polarization
 - N-subjettiness (S. De, V. Rentala, W. Shepherd arXiv:2008.04318v1)
 - How does machine learning do?

First ingredient: Boosted W Jet

- Quark becomes QCD jet
- Due to the boost, collimation of the jet deduces the angular distribution signature
- After boost $\theta^* \to \text{opening angle (sensitive to pT)}$
- At extreme high p_T^W , subjet signature can disappear
- Particles are plotted on pixelized $\eta-\phi$ plane and their color is determined from p_T

Convolutional Neural Network (CNN)

Image classification

• The network is trained with simulated events (MadGraph + Pythia + Delphes) of boosted longitudinal and transverse W's respectively for tagging purposes

Training Sample

Longitudinal :
$$pp o \phi o W^\pm W^\mp$$

Transverse : $pp \rightarrow W^{\pm}j$

$$pp \to W^{\pm}(j)Z(l^+l^-)$$

- · We did not consider any underlying events (looking into ideal scenarios as first study)
- Depending on p_T^W , images are separated into 2 bins: [200,300] and [400,500] since for fat jet, $\Delta R pprox rac{2m_W}{p_T^W}$

ROC Curve

Trained Network Quality Check

- Checking distribution can tell us how good the separation between two polarization
- Inhibits potential event by event tagging because of large overlap

Putting decision threshold would contain large contamination

- As a result, we decide to use pure polarization distributions as template to identify the polarization content in given event collection
 - randomly select number of jet images from unknown sample → polarization fraction

Longitudinal fraction (f_L)

Template fit method

- Consider each pure polarization histogram as "template" that can be applied to the unknown sample
- Fit quality is determined by χ^2 distance test

$$\chi^{2}(f_{L}) = \sum_{i=1}^{B} \frac{(O_{i} - N_{s}(f_{L}L_{i} + (1 - f_{L})T_{i}))^{2}}{N_{s}(f_{L}L_{i} + (1 - f_{L})T_{i})}$$

Simpler Method

Network output average method

- Template fitting method depends on finding "sweet spot" for f_L
 - number of bins
 - find minimum $\chi^2(f_L)$
- Simplify by treating output distribution as probability distribution

$$\int x dx \left(D_u(x) = f_L D_L(x) + (1 - f_L) D_T(x) \right)$$

$$\left\langle x_u \right\rangle = f_L \left\langle x_L \right\rangle + (1 - f_L) \left\langle x_T \right\rangle$$

$$f_L = \frac{\left\langle x_u \right\rangle - \left\langle x_T \right\rangle}{\left\langle x_L \right\rangle - \left\langle x_T \right\rangle}$$

Confirmed that both yield the same result

SM Prediction Result

$$pp \to W^{\pm}Z$$

p_T range	truth σ_L / σ_{tot}		p_T range		predicted f_L	
[200,300]		0.265	0.259 ± 0.013			
[400,500]		0.304	0.300 ± 0.033			

- Truth f_L is obtained from polarization enforced feature of MadGraph
- At both p_T , predicted values are accurate with enough precision
- At high p_T , larger uncertainty comes from lower statistics
- Error is estimated from pseudo experiments
- CNN can predict well with SM case but need to test more (SMEFT extension)

SMEFT Extension (Scenario 1)

Shift cross section and polarization fraction

SM

p_T range	$\sigma(pp o W^\pm(jj)Z(\ell))$		$Z(\ell\ell)$) (fb)		th $\sigma_L/\sigma_{ m tot}$	predicted f_L	
$200\mathrm{GeV} \leq p_T \leq 300\mathrm{GeV}$		6.67			0.265	0.259 ± 0.013	
$400\mathrm{GeV} \leq p_T \leq 500\mathrm{GeV}$		0.35			0.304	0.300 ± 0.033	

SM + single operator

	p_T range	$\sigma($	$pp o W^{\pm}Z)$ (f	(da	trı	$a anh \sigma_L/\sigma_{tot}$	predicted f_L
0	$200\mathrm{GeV} \le p_T \le 300\mathrm{GeV}$		6.93			0.311	0.297 ± 0.010
$\mid O_W \mid$	$400\mathrm{GeV} \le p_T \le 500\mathrm{GeV}$		0.42			0.439	0.391 ± 0.033
0	$200\mathrm{GeV} \le p_T \le 300\mathrm{GeV}$		6.58			0.258	0.254 ± 0.011
$\mid O_{3W} \mid \mid$	$400 \mathrm{GeV} \le p_T \le 500 \mathrm{GeV}$		0.50			0.198	0.181 ± 0.043

- Benchmark Wilson Coefficient values

 - $c_W = 10^{-3}$ $c_{3W} = 3 \times 10^{-3}$
- If cross section measurement does not match to SM, polarization measurement can be a key to spot the dominancy

SMEFT Extension (Scenario 2)

Equal cross section but shift polarization fraction

SM

p_T range	$\sigma(pp \to \underline{W^{\pm}(jj)Z(\ell\ell)})$ (fb)		tr	uth $\sigma_L/\sigma_{ m tot}$	predicted f_L	
$200\mathrm{GeV} \leq p_T \leq 300\mathrm{GeV}$		6.67			0.265	0.259 ± 0.013
$400\mathrm{GeV} \le p_T \le 500\mathrm{GeV}$		0.35			0.304	0.300 ± 0.033

$$SM + \mathcal{O}_W + \mathcal{O}_{3W}$$

p_T range	$\sigma(pp \to W^{\pm}Z)$ (fb		(fb)	truth σ_L/σ_{tot}		predicted f_L	
$200 \text{ GeV} \le p_T \le 300 \text{ GeV}$		6.68			0.202	0.207 ± 0.011	
$400\mathrm{GeV} \le p_T \le 500\mathrm{GeV}$		0.34			0.285	0.282 ± 0.044	

- Two Wilson coefficients are tuned to keep cross section the same but shift f_L
- Even though cross section agrees with SM, polarization measurement can be a way to capture BSM signatures

Conclusion/Discussion

- In this initial study, analysis using network's output average values can help to predict f_L even for hadronic ${\cal W}$
- Network prediction can catch f_L deviations originated from dim 6 operators
- With or without cross section shift, polarization measurement can clear out degeneracies between EFT operators
- Future directions
 - ullet Possible applicability on Z jets
 - W^{\pm} vs. Z vs. QCD (adding more realistic components)
 - Further optimization of network

Different Network Results

MaxOut & ResNet

	truth	$f_L \text{ CNN}$	f_L MaxOut	f_L ResNet
SM	0.265	0.259 ± 0.013	0.287 ± 0.011	0.259 ± 0.012
O_W	0.311	0.297 ± 0.010	0.321 ± 0.010	0.295 ± 0.009
O_{3W}	0.258	0.254 ± 0.011	0.282 ± 0.012	0.257 ± 0.011

Low pT

	truth	$f_L \text{ CNN}$	f_L MaxOut	f_L ResNet
SM	0.304	0.300 ± 0.033	0.323 ± 0.026	0.301 ± 0.034
O_W	0.439	0.391 ± 0.033	0.407 ± 0.025	0.414 ± 0.034
O_{3W}	0.198	0.181 ± 0.043	0.250 ± 0.026	0.194 ± 0.032

High pT

Backup slides

Training Quality

Distribution check

Training Quality

Distribution check

- Checking distribution can tell us how good the separation between Logi and trans is.
- Inhibits potential event by event tagging since accuracy is ~ 60%
- Ensemble distribution checking to find longitudinal fraction (f_I)

CNN Training

Structure and training information

Ordinary CNN structure: Convolution - Flatten - Dense

pT bin	Training/Validation	Validation accuracy
[200, 300]	340k/85k	63%
[400, 500]	236k/59k	64%

Kinematic Cut Effect

W rest frame
$$\frac{1}{\sigma}\frac{d\sigma}{d\mathrm{cos}\theta^*} = \frac{3}{8}(1-\mathrm{cos}\theta^*)^2f_L + \frac{3}{8}(1+\mathrm{cos}\theta^*)^2f_R + \frac{3}{4}\mathrm{sin}^2\theta^*f_0,$$

$$\begin{split} \frac{1}{\sigma} \frac{d\sigma}{d \mathrm{cos} \theta^* d \phi^*} &= \frac{3}{16\pi} [(1 + \mathrm{cos}^2 \theta^*) + A_0 \frac{1}{2} (1 - 3 \mathrm{cos}^2 \theta^*) + A_1 \mathrm{sin} 2\theta^* \mathrm{cos} \phi^* \\ &+ A_2 \frac{1}{2} \mathrm{sin}^2 \theta^* \mathrm{cos} 2\phi^* + A_3 \mathrm{sin} \theta^* \mathrm{cos} \phi^* + A_4 \mathrm{cos} \theta^*], \end{split}$$

• Integrating over ϕ^* will give the same result but kinematic cut can change

Kinematic Cut Effect

Kinematic Cut Effect

Figure 9: Normalised azimuthal angle distributions for a set of different selection cuts imposed on final-state leptons and jets for $W^+ + 1$ jet production at 7 TeV.

Uncertainty

Small experiments

- From large test set, we randomly select subset (N number of events) to obtain f_L
- N is determined from expected number of events at particular luminosity
- At current LHC luminosity ~ 2000 events at low p_T and 200 events at high p_T
- At High Lumi LHC ~ 20k events at low p_T and 2k events at high p_T
- By iterating the process, we can obtain average value with standard deviation

	300 fb ⁻¹	3000 fb ⁻¹
[200,300]	0.044	0.010
[400,500]	0.130	0.033

Experimental Results

ATLAS result

ATLAS Result (36fb^{-1})

	f_0							
	Data Powheg+Pythia			MATRIX				
W^+ in W^+Z	0.26 ± 0.08	0.233 ±	0.004	0.2448 ±	0.0010			
W^- in W^-Z	0.32 ± 0.09	$0.245 \pm$	0.005	$0.2651 \pm$	0.0015			
W^{\pm} in $W^{\pm}Z$	0.26 ± 0.06	$0.2376 \pm$	0.0031	$0.2506 \pm$	0.0006			
Z in W^+Z	0.27 ± 0.05	$0.225 \pm$	0.004	$0.2401 \pm$	0.0014			
Z in W^-Z	0.21 ± 0.06	$0.235 \pm$	0.005	$0.2389 \pm$	0.0015			
Z in $W^{\pm}Z$	0.24 ± 0.04	$0.2294 \pm$	0.0033	$0.2398 \pm$	0.0014			

ATLAS Collaboration [arXiv:1902.05759]

- 1. Previous attempts from ATLAS collaboration to measure polarization with leptonic final states
 - Leptonic final state: small branching ratio
 - Complication in ν reconstruction
- 2. If we can use hadronic W, we gain more statistics but need to deal with hadronic jets