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• Indirect approach of checking SM : polarization searches


• Longitudinal vs. Transverse


• SM can predict polarization fraction


• Longitudinal polarization is sensitive to EWSB


• New physics can impact polarizations fractions. Ex.) new resonance, or higher 
dimensional operators (SMEFT)

Massive vector boson final states
Theoretical Motivation

p p → W± W∓

p p → W± Z

p p → Z Z
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• Leptonic tagging is done


• lower branching ratio than hadronic state


• neutrino reconstruction


• Can we do hadronic W tagging?


• Extract correct boson jet


• QCD effect washes out parton level information


• Possible jet substructure information can be used to tag polarization


• N-subjettiness (S. De, V. Rentala, W. Shepherd  arXiv:2008.04318v1)


• How does machine learning do?

W Polarization Measurement
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Decay of W
 polarizationW
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• Since  only interacts to the left handed particles, each polarization has 
distinct angular distribution (or, in lab frame,  )


• Parton level distribution can be used as a reference point for the network 
optimization


• Due to the deviation, it is possible to measure polarization fraction for 
diboson final states

W
(Eq − Eq̄)/ | ⃗p W |

Parton level decay
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Parton level



• SMEFT extends the SM Lagrangian by gauge invariant higher dim (D>4) operators


• 


•  can appear in two ways:


1. Primarily transverse as 


2. Primarily longitudinal as Goldstone gets eaten

ℒSMEFT = ℒSM +
inf

∑
D>4

1
ΛD−4

c(D)
j 𝒪(D)

j

W±/Z

Wa
μν → ϵμ

LWa
μν ∼

kμ

mW
Wa

μν ≈ 0

DμH →

Higher dimensional operators and W/Z polarization
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Relevant operators (SILH) for diboson final states
Da Liu, Lian-Tao Wang [arXiv: 1804.08688v1]

𝒪B = (H†σaDμH) ∂νBμν

𝒪HW = ig (DμH )† σa (DνH) Wa
μν 𝒪HW = ig′￼(DμH )† (DνH) Bμν

𝒪2W = −
1
2

DμWa
μνDρWaρν

𝒪W =
ig
2 (H†σaDμH) DνWa

μν

𝒪3W =
1
3!

gϵabcWaν
μ Wb

νρWcρμ We will focus on the boxed operators



• Operators above contribute to the cross section of   but different impact on 
polarization breakdown


• Knowing polarization can better distinguish between effects


• For our analysis, we do not introduce full SMEFT operators for simplification of 
parameters


• Benchmark SMEFT Lagrangian :  


• We will later predict longitudinal content of   for both SM and SMEFT 
cases

pp → W±Z

ℒSMEFT = ℒSM +
2 cW

mW 2
𝒪W +

3! c3W g2

mW 2
𝒪3W

pp → W±( jj)Z(ll)

Higher dimensional operators and W/Z polarization
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𝒪W =
ig
2 (H†σaDμH) DνWa

μν 𝒪3W =
1
3!

gϵabcWaν
μ Wb

νρWcρμ

Convention from A. Alloul, B. Fuks, and V. Sanz, arXiv:1310.5150
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Decay of W
First ingredient: Boosted  JetW

Boost

Fat jet ΔR ≈
2mW

pW
T

Subjet
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• Quark becomes QCD jet


• Due to the boost, collimation of the jet deduces the angular distribution signature


• After boost opening angle (sensitive to pT)


• At extreme high , subjet signature can disappear


• Particles are plotted on pixelized  plane and their color is determined from 

θ* →

pW
T

η − ϕ pT

Lab Frame Preprocessed

Jet image

Detector



Image classification
Convolutional Neural Network (CNN)
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• The network is trained with simulated events (MadGraph + Pythia + Delphes) of boosted longitudinal and 
transverse ’s respectively for tagging purposes


• We did not consider any underlying events ( looking into ideal scenarios as first study )


• Depending on , images are separated into 2 bins: [200,300] and [400,500] since for fat jet, 

W

pW
T ΔR ≈

2mW

pW
T

1 for Longitudinal

0 for Transverse

Single  jet imageW

Longitudinal : 


Transverse : 

pp → ϕ → W±W∓

pp → W±j
Training Sample Testing Sample pp → W±( j)Z(l+l−)



ROC Curve
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[200, 300]



• As a result, we decide to use pure polarization distributions as template to identify the 
polarization content in given event collection


• randomly select number of jet images from unknown sample  polarization fraction→

Trained Network Quality Check
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[200, 300]

• Checking distribution can tell us how good the 
separation between two polarization


• Inhibits potential event by event tagging 
because of large overlap

Putting decision threshold would contain large contamination



• Consider each pure polarization histogram as “template” that can be applied to the 
unknown sample


• Fit quality is determined by  distance testχ2

Template fit method
Longitudinal fraction ( fL)
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Du(xi) = fLDL(xi) + (1 − fL)DT(xi)

χ2( fL) =
B

∑
i=1

(Oi − Ns( fLLi + (1 − fL)Ti))2

Ns( fLLi + (1 − fL)Ti)

Unknown

Longi
Transv
Sum



• Template fitting method depends on finding “sweet spot” for 


• number of bins


• find minimum 


• Simplify by treating output distribution as probability distribution

fL

χ2( fL)

Network output average method
Simpler Method
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∫ xdx (Du(x) = fLDL(x) + (1 − fL)DT(x))

⟨xu⟩ = fL ⟨xL⟩ + (1 − fL)⟨xT⟩

fL = ⟨xu⟩ − ⟨xT⟩
⟨xL⟩ − ⟨xT⟩

Confirmed that both yield the same result



• Truth  is obtained from polarization enforced feature of MadGraph


• At both , predicted values are accurate with enough precision


• At high , larger uncertainty comes from lower statistics 


• Error is estimated from pseudo experiments


• CNN can predict well with SM case but need to test more (SMEFT extension)

fL

pT

pT

SM Prediction Result
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truth     / predicted 

[200,300] 0.265

[400,500]

σL /σtot fL
0.259 ± 0.013

pT range

0.304 0.300 ± 0.033

p p → W± Z



• Benchmark Wilson Coefficient values


• 


• 


• If cross section measurement does not match to SM, polarization measurement can be 
a key to spot the dominancy

cW = 10−3

c3W = 3 × 10−3

SMEFT Extension (Scenario 1)
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SM

Shift cross section and polarization fraction

SM + single operator



• Two Wilson coefficients are tuned to keep cross section the same but shift  


• Even though cross section agrees with SM, polarization measurement can be a 
way to capture BSM signatures

fL

SMEFT Extension (Scenario 2)
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SM + 𝒪W + 𝒪3W

SM

Equal cross section but shift polarization fraction



• In this initial study, analysis using network’s output average values can help to 
predict  even for hadronic 


• Network prediction can catch  deviations originated from dim 6 operators


• With or without cross section shift, polarization measurement can clear out 
degeneracies between EFT operators


• Future directions


• Possible applicability on  jets


•  vs.  vs. QCD (adding more realistic components)


• Further optimization of network 

fL W

fL

Z

W± Z

Conclusion/Discussion
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Z → uū



MaxOut & ResNet
Different Network Results
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Low pT

High pT



Backup slides
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Distribution check
Training Quality
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[200, 300] [400, 500]



• Checking distribution can tell us how good the separation between Logi and trans is. 


• Inhibits potential event by event tagging since accuracy is ~ 60% 


• Ensemble distribution checking to find longitudinal fraction ( )fL

Distribution check
Training Quality
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Ordinary CNN structure : Convolution - Flatten - Dense

Structure and training information
CNN Training
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pT bin Training/Validation Validation accuracy

[200, 300] 340k/85k 63%

[400, 500] 236k/59k 64%

0 for Transverse

1 for Longitudinal



• Integrating over  will give the same result but kinematic cut can change ϕ*

Kinematic Cut Effect

24

W rest frame

W at LHC



Kinematic Cut Effect
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Kinematic Cut Effect
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• From large test set, we randomly select subset (  number of events) to obtain 


•  is determined from expected number of events at particular luminosity


• At current LHC luminosity ~ 2000 events at low  and 200 events at high 


• At High Lumi LHC ~ 20k events at low  and 2k events at high 


• By iterating the process, we can obtain average value with standard deviation

N fL

N

pT pT

pT pT

Small experiments
Uncertainty
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300 fb-1 3000 fb-1

[200,300] 0.044 0.010

[400,500] 0.130 0.033



1. Previous attempts from ATLAS collaboration to measure polarization with leptonic final states


• Leptonic final state: small branching ratio


• Complication in  reconstruction


2. If we can use hadronic W, we gain more statistics but need to deal with hadronic jets

ν

ATLAS result
Experimental Results
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ATLAS Result ( )36fb−1

ATLAS Collaboration [arXiv:1902.05759]


