

Contribution ID: 3

Type: not specified

## A $W^{\pm}$ polarization analyzer from Deep Neural Networks

Wednesday 7 July 2021 11:20 (20 minutes)

We train a Convolutional Neural Network to classify longitudinally and transversely polarized hadronic  $W^{\pm}$ using the images of boosted  $W^{\pm}$  jets as input. The images capture angular and energy information from the jet constituents that is faithful to the properties of the original quark/anti-quark  $W^{\pm}$  decay products without the need for invasive substructure cuts. We find that the difference between the polarizations is too subtle for the network to be used as an event-by-event tagger. However, given an ensemble of  $W^{\pm}$  events with unknown polarization, the average network output from that ensemble can be used to extract the longitudinal fraction  $f_L$ . We test the network on Standard Model  $pp \to W^{\pm}Z$  events and on  $pp \to W^{\pm}Z$  in the presence of dimension-6 operators that perturb the polarization composition.

## **Academic Rank**

PhD student

## Affiliation

University of Notre Dame

Authors: KIM, Taegyun (University of Notre Dame); MARTIN, Adam Orion (University of Notre Dame (US))

Presenter: KIM, Taegyun (University of Notre Dame)

Session Classification: Classification