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Geant4 simulation R&D activities 
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3Figures from Geant4 Advanced Course, Anna Zaborowska

How to fast simulate particles in Geant4?
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https://indico.cern.ch/event/866056/contributions/3726143/attachments/2114291/3556913/G4Course_fastSim_handout.pdf


From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

FullSim samplesTraining samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Python environment
CPU, GPU, ... 

Model 
Converter

Inference Interface
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C++ environment
Inference : CPU, GPU ...
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One model to learn from different tasks/domains ?



Geant4 samples

z
    Incident angles 
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P ( shower | energy , incident angle , geometry)

● 3D readout geometry, 
electromagnetic calorimeters 

○ Lead tungstate (PBWO4)
○ Silicon-tungsten (SiW)

● Flat energy samples 1-500 GeV
● Incident angle from 0o to 90o
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Geant4 Inference Interface

10

Interface that allows to read in NN models, configure, and execute inference. 

Two main functions :

  void GetEnergies(std::vector<G4double>& aDepositsEnergies, 
G4double aParticleEnergy);

void GetPositions(std::vector<G4ThreeVector>& aDepositsPositions,
                G4ThreeVector aParticlePosition,
                G4ThreeVector aParticleDirection);

Infer energies deposited in the 

detector

Calculate positions to 

corresponding energies in the 

detector



Inference libraries : LWTNN vs ONNX
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LightWeight Trained Neural Network 
(LWTNN)

Description C++ library to apply NN
Minimal dependencies : Eigen, Boost

Supported ML 
libraries

Sklearn and Keras models (it is possible to 
convert a Tensorflow model to a keras 
model)

Supported layers All expect:  CNN, Repeat Vector, Reshape.

Supported 
Activation functions

All except: Selu, PRelu

File format JSON

Github

https://github.com/lwtnn/lwtnn


Inference libraries : LWTNN vs ONNX
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LightWeight Trained Neural Network 
(LWTNN)

Open Neural Network Exchange 
(ONXX)   Github

Description C++ library to apply NN
Minimal dependencies : Eigen, Boost

Open format to represent ML models 
ONNX Runtime: a cross-platform framework 
for ML model’s inference and deployment 

Supported ML 
libraries

Sklearn and Keras models (it is possible to 
convert a Tensorflow model to a keras 
model)

Saves models from (almost) all libraries 

Supported layers All expect:  CNN, Repeat Vector, Reshape. All

Supported 
Activation functions

All except: Selu, PRelu All

File format JSON ProtoBuf

Github

https://github.com/onnx/onnx
https://github.com/lwtnn/lwtnn


From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

G4 samples (FullSim)Training samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Model 
Converter

Inference Interface

FasSim samples

h5, 
tf-Records, 

...

Model 
saving

Disk space 
Model weights (.h5  file) 28.3 MB
Architecture (.json file) 5.71 kB

LWTNN
.json

195 MB

ONNX
.onnx

28.3 MB



From ML training to Geant4 fast simulation
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ML Training Geant4 Simulation

G4 samples (FullSim)Training samples Data 
Converter

Trained model

ML model, objective function, HPO optimization, 
knowledge injection, validation ...

Model 
Converter

Inference Interface

FasSim samples

h5, 
tf-Records, 

...

Model 
saving

LWTNN ONNX

 4GB 61MBResident Memory

Virtual Memory 4GB 52MB



How to better optimize the memory footprint ?
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ML 
Optimization

Integration 
Optimization

● Using a highly granular calorimeter -> more inputs to the model -> larger network -> 
more parameters -> larger memory footprint  

● The memory footprint can be optimized 
○ ML optimization : to reduce the number of trainable parameters
○ Integration optimization : to reduce the complexity of the model representation 



● Graphs :  as data structures

● ONNX Runtime provides various graph optimizations to improve model 
performance. 

● Graph optimizations graph-level transformations

○ Basic Graph Optimizations : remove redundant nodes and redundant 
computation

○ Extended Graph Optimizations: fuse nodes

● Graph optimizations can be performed

○ Online mode, the optimizations are done before the inference, 

○ Offline mode, the runtime saves the optimized graph to disk. 

● ONNX Runtime provides Python, C#, C++, and C APIs to enable different 
optimization levels and to choose between offline vs. online mode.

Integration optimization : Graph optimization 
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Integration optimization : Quantization 
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Raw Model (without 
optimization)

Quantized Model

Disk space (MB) 551 139 

Loading + 
Inference 

Resident memory (MB) 2265.34 650.414 

Virtual memory(MB) 3205.26 1339.22 

● Quantization in ONNX Runtime refers to 8 bit linear quantization
● Floating point real values are mapped to an 8 bit quantization space 

Documentation

https://www.onnxruntime.ai/docs/how-to/quantization.html


Integration optimization : Graph optimization of a quantized 
model  
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Basic Optimization Extended Optimization

Resident memory (MB) 650.414 555.828 

Virtual memory (MB) 1339.22 1073.21
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LHCb geometry loaded from a GDML file

Multi-detector geometry modeling using an 
LHC experiment calorimeter 

http://gdml.web.cern.ch/GDML/
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● Multi-detector geometry model 
○ Conditioned on the geometry, energy and incident angle of the particle
○ First tested on 2 simplified geometries 
○ Currently testing on a real LHC experiment detector 

■ Many improvements are expected
■ More geometries will be tested and evaluated 

● Geant4 inference integration
○ Provide G4 examples extending its simulation facilities to ML-based fast simulation 
○ Compare inference libraries such as LWTNN, ONNX
○ To better optimize the memory footprint with ONNX

■ Graph optimizations 
■ Qunatization 
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Summary

Thank you for your attention !



Backup 
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Geant4 Inference Interface : simulation time

With LWTNN
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Model loading Session Initialization

Inference 

28 ms

Model profiling : inference on a single event  
Time



PBWO4 Geometry with 24x24x24 cell segmentation
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PBWO4 Geometry with 24x24x24 cell segmentation



Validation metrics

28Source

https://towardsdatascience.com/17-types-of-similarity-and-dissimilarity-measures-used-in-data-science-3eb914d2681
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In CNN only last 

layer is fully 
connected 

Dense layers

Convolutional  layers

● With smaller input size 24x24x24 dense 
layers are easy to train , number of 
trainable parameters depends on the 
width and length of the NN

● Test 1: (50x48x120) with dense layers
● Test 2: (50,48,120) with Conv layers

+ Reduce the number of trainable 
parameters 

600 Mb (with 
integration 
optimization)

500 Mb (no 
integration 
optimization)

Memory 
footprint 
(CPU)

ML optimization : from dense to convolutional layers


