High Fidelity Simulation of High Granularity Calorimeters with High Speed

ML4Jets meeting 07.07.2021

E.Buhmann, S. Diefenbacher, E. Eren, F. Gaede, D. Hundhausen, G. Kasieczka, W. Korcari, A. Korol, K. Krüger, P. McKeown and L. Rustige

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Deep Generative Models

- Calorimeter simulation in HEP is CPU expensive!
- Promising solution for a **fast shower simulation**
 - Generate new samples by following the distribution of original data (i.e Geant4)
 - Map random noise to data
 - Conditioning

Recap: Generative Adversarial Neural Networks (GANs)

GAN

- First generative architecture used for simulating showers
- Discriminator tries to differentiate: Fake or Real ?
- · Generator tries to fool the distriminator
- New: Apply mini-batch discrimination (pion)

WGAN

- Alternative to classical GAN training: Helps improve the <u>stability</u> of the training Use Wasserstein-1 distance as a loss with gradient penalty
- Second network to constrain energy
- New: Latent optimization method (LO) is employed (pion)

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Unifies features of GANs and Autoencoders
- WGAN-like critics evaluate the quality of reconstructed images

Voloshynovskiy et al.: Information bottleneck through variational glasses: <u>1912.00830</u>

Bounded-Information Bottleneck Autoencoder (BIB-AE)

- Latent regularization is improved by an additional critic and a Maximum Mean Discrepancy (MMD) term
- Additional Post-Processor network, trained in a second step, is used to improved per-pixel energies
- New: Sampling from encoded latent space via multi-dimensional Kernel Density Estimation (KDE)
- New: Batch statistics involved in backward propagation

Photon Dataset

- 950k showers
- Fixed incident point and angle
- Uniform 10 GeV to 100 GeV
- 30x30x30 image

Highly Granular ECAL of ILD

Photon Results

Very good agreement of MIP peak for BIB-AE with Post-Processing! Peak and shape of the energy-sum is nicely reproduced by all models BIB-AE and GAN correctly model number of hits

Linearity and Resolution*

Hadron Showers

- Success for electromagnetic showers, now started to address hadronic (pion) showers:
 - Much more complex shower structure
 - Currently training with a smaller 3D image containing the active area (i.e shower core)
 - Started with GAN, WGAN, BIB-AE and alternatives

Pion Dataset

- 500k showers
- Fixed incident point and angle
- Uniform 10 GeV to 100 GeV

48x48x48

Latent Optimized WGAN

Latent Optimisation

Standard WGAN

Wu et al.: LOGAN: Latent Optimisation for Generative Adversarial Networks 1912.00953

Pion Shower Results I

Very good agreement of MIP peak for BIB-AE with Post-Processing!

Overall good agreement with Geant4, still room for improvement

Pion Shower Results II

Both WGAN and BIB-AE fairly reproduces bulk of Geant4 distributions

Linearity and Resolution

Computation Time

Hardware	Simulator	Photons	3	Pions			
		Time/shower[ms]	Speed-up	Time/shower[ms]	Speed-up		
CPU	Geant4	4082±170	×1	2684±125	×1		
	WGAN	61.44±0.03	×66	195.67±0.56	×14		
	BIB-AE	95.98±0.08	×43	36.05±0.82	×74		
GPU	WGAN	3.93±0.03	×1039	2.695±0.004	×996		
	BIB-AE	1.60±0.03	×2551	1.101±0.004	×2438		

We observe speed-ups of three orders of magnitude

Conclusions and Outlook

Application of generative models to high resolution EM and hadronic showers simulation

- ✓ Modelling of MIP peak and achieving high fidelity
- ✓ Speed-up: 3 orders of magnitude

Architectures and extensions:

- GAN (+ Mini-Batch discr.)
- WGAN (+ Latent Opt.)
- BIB-AE (+ KDE sampl. + Mini-Batch discr.)

- Future plans:
 - Condition on incident position / angle
 - More focus on hadron showers and full size-showers
 - Integrate into existing tools / frameworks

Buhmann, et al.: **Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed.** Comput Softw Big Sci 5, 13 (2021)

Thank you

Kernel Density Estimation BIB-AE

Photon all

Correlations (Pion)

GEANT4 - BIB-AE PP KDE

	m_1	m_1	m_1	m_2	m_2	m_2	Ę	$E_{ m i}$	$n_{ m l}$	E_1/E	E_2/E_2	E_3/E_2
- 5 / v 1s	, x	, y	2,	,x	, y	, z	vis	nc	hit	vis	vis	vis
$E_3/E_{\rm vis}$	0.00	0.00	0.01	-0.06	-0.05	-0.11	-0.01	-0.01	-0.01	-0.01	-0.02	0.00
$E_2/E_{\rm vis}$	-0.00	-0.05	-0.03	0.03	0.03	-0.03	-0.01	-0.01	-0.01	0.02	0.00	
$E_1/E_{\rm vis}$	-0.00	0.04	0.00	0.02	0.01	0.09	0.02	0.01	0.02	0.00		
$n_{ m hit}$	0.04	0.03	-0.02	0.08	0.02	-0.02	0.00	0.01	0.00			
$E_{\rm inc}$	0.01	0.01	-0.02	0.08	0.04	-0.03	0.01	0.00				
$E_{\rm vis}$	0.02	-0.02	-0.02	0.02	-0.00	-0.01	0.00					
$m_{2,z}$	0.00	0.04	-0.11	-0.04	-0.05	0.00						
$m_{2,y}$	-0.01	0.11	-0.03	-0.04	0.00							
$m_{2,x}$	-0.06	-0.00	-0.04	0.00								
$m_{1,z}$	0.00	-0.02	0.00									
$m_{1,y}$	-0.06	0.00										
$m_{1,x}$	0.00											

GEANT4 - WGAN LO

