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Introduction
• Simulations are a crucial part of particle physics

• Current simulations (GEANT4) are accurate but computationally costly, and this 
is limiting discovery

• Hope Machine Learning (ML) can help make faster particle simulations
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• Foundations of a method to entirely replace current simulations in analyses 
• Fast
• Data-driven (trained using data from control regions)
• Ability to build-in physics-motivated constraints
• Easy to inspect and interpret

Optimal Transport based Unfolding and Simulation

Augment 
Current Simulations

Substitute slowest parts of 
current simulations

or
Multiply simulated datasets

Previous Work
Replace 

Current Simulations
Taking the place of 
current simulations

This Work



Thinking about the problem

𝒪(100) 𝒪(106)𝒪(10) 𝒪(10)

• Current simulations have 4 main stages that mimic real life

Madgraph5

ReconstructionParton Interactions Showering Detection

u
d̄

jet

jet
MW

u

d̄

Pythia8 Delphes/GEANT4

OTUS

Can we use ML to predict reconstructed data from parton interactions in a data-driven way?

[5] Otten, Sydney, et al.   arXiv: 1901.00875[1] Butter, Anja, et al.   arXiv: 1907.03764
[3] Paganini, Michela, et al.   arXiv: 1712.10321
[2] de Oliveira, Luke, et al.   arXiv: 1701.05927

[4] Buhmann, Erik, et al.   arXiv: 2005.05334
[6] Hashemi, Bobak, et al.   arXiv: 1901.05282
[1] Butter, Anja, et al.   arXiv: 1907.03764

Previous work has successfully 
produced data from noise at 

these various stages
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Defining the Objective

• What we want 

• Conditional mapping from parton interactions ( Z ) to observed data ( X ): Z  X

• Stochastic

• The option to train on real data in control regions, not data produced by the current simulation

→

• Translating to ML terms

• Conditional, generative, stochastic architectures 

trained via unsupervised learning

Rules

1. Z  X 

2. Stochastic 

3. Unsupervised

→
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Unsupervised, Generative ML

r Generator XRandom  
Gaussian noise

YEncoderX

Latent space 
(Gaussian prior)

Decoder XY

Generative Adversarial Networks (GANs)Variational Autoencoders (VAEs)
(arXiv: 1712.10321, 1701.05927, 1903.10563, 1901.00875)(arXiv: 1901.00875, 2005.05334)

BONUS 
If we succeed we also get a free 

“unfolding” map: X  Z→
• What if we could replace  ( or Y ) with Z?


• GANs: violates unsupervised learning tenant
r

• Previous work has largely focused on GANs over VAEs

• VAEs ~ GANs + extra optimization hurdle

• GANs are not ideal for this problem

• They only mimic X, they do not learn the transformation Z X→

• VAEs: not immediately possible, but there may be a way out…

Rules

1. Z  X 

2. Stochastic 

3. Unsupervised

→
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Rules

1. Z  X 

2. Stochastic 

3. Unsupervised

→

Altering VAEs

• Fixes other problems with VAEs along the way

• Traditional VAEs use KL-divergence as latent loss

• Requires latent prior  to have tractable form (Gaussian)p(y)

• Is there a suitable replacement loss?

• Answer: Yes!

[1] Kolouri, Soheil, et al. arXiv: 1804.01947 (see also Kolouri, Soheil, et al. arXiv: 1902.00434)

• Recent paper: Sliced Wasserstein Autoencoders (SWAE)[1] 

• Loss based on Wasserstein distance from Optimal Transport theory

• Latent prior can be any sample-able distribution
• Allows for encoder and decoder to be inherently stochastic

• What we get:

VAE Structure

Encoder

Latent 
space

Decoder

x̃

ỹ

x

y

x

Latent Loss

Data Loss
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• The prior  of our theory space (Z) often does not have 
a tractable form 

p(z)

https://arxiv.org/abs/1804.01947
https://arxiv.org/abs/1902.00434
https://arxiv.org/abs/1804.01947
https://arxiv.org/abs/1902.00434


Pulling it All Together

SWAE Structure

• Total SWAE loss function:    
L SWAE  = L Data + L Latentλ

Encoder pE(z |x)“Unfolding”

Decoder pD(x |z)“Simulation”

x ∼ p(x)Control region data Reconstructed Data Space ( X )

x̃ Reconstructed Data Space ( X )

z̃ ∼ pE(z) Physical Latent Space ( Z )

• Latent loss (L Latent) 

• SW distance for finite samples

z ∼ p(z)
True theory prior

L Latent

x L Data

• Data loss (L Data): 

• Mean Squared Error (MSE)

• Easy to add additional physically-motivated 
constraints

L  = L SWAE +  Liλ′ i

06 / 11Jessica N. Howard July 6 - July 8, 2021



Putting it to the test

• Z space:  and  4-momenta from Madgraph5 → [8 dimensions]e+ e−

• X space: , , and  4-momenta from Delphes 

• Restrict to final state of exactly 4 jets →  [24 dimensions]

e− MET jets

• Note that X and Z do not need to have the same dimensions, but do in these tests

• Test case 1: pp → Z → e+e−

• X space:  and  4-momenta from Delphes → [8 dimensions]e+ e−

• Test case 2:  (semileptonic)pp → tt̄

• Z space: , , , , , and   4-momenta from Madgraph5 →  [24 dimensions]e− ν̄e b b̄ u d̄
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Simulation Results: Data Space (X)

Positron ( )e+ Leading jet

pp → Z → e+e− pp → tt̄
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More Results: What did it learn?

pp → Z → e+e− pp → tt̄

• Not only interested in distribution matching, we care about the mapping being physical
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More Results: What did it learn?

pp → Z → e+e− pp → tt̄

Delphes Transport plan ( )z → x

Positron 

 in XE

Positron 

 in ZE

Z

X

Decoder Transport plan ( )z̃ → x̃

Positron 

 in ZE

Positron 

 in XE

Z

X

 quark

 in Z

b
E

Leading 
Jet 

 in XE

Z

X

Decoder Transport plan ( )z̃ → x̃

 quark

 in Z

b
E

Leading 
Jet 

 in XE

Z

X

Delphes Transport plan ( )z → x

Transport plans:
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Conclusion and Future Work
• New approach to fast simulation: Optimal Transport 

based Unfolding and Simulation (OTUS)
• First step towards a data-driven, ML simulator
• Bonus: Also get unfolding mapping 

• Future work
• More robust description of the data 
• Handle variable particle types and numbers in data
• Test ability to apply outside of control regions

• Performance on simple cases is promising but 
there is still work to do

• Mathematically well-posed offering many advantages

11 / 11Jessica N. Howard July 6 - July 8, 2021

Code  doi: 10.5281/zenodo.4706055 →
Data  doi: 10.7280/D1WQ3R→

https://doi.org/10.7280/D1WQ3R
https://doi.org/10.7280/D1WQ3R
https://doi.org/10.5281/zenodo.4706055
https://doi.org/10.5281/zenodo.4706055


Backup Slides
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p(y)p(x)

pE(y)

(S)WAE Details
• Wasserstein Autoencoders (WAE)[1] first reimagined the VAE objective using Optimal Transport 

theory to solve another problem with traditional VAEs

Problem #1:  
VAE latent loss encourages information collapse

L Latent = KL( pE(y |xi) | | p(y))

• WAE fixes this by matching distributions instead

[1] Tolstikhin, Ilya, et al. arXiv: 1711.01558 

xi

pE(y |xi)

p(y)p(x)

Encoding distribution Latent prior

p(y)and= ∫ dx pE(y |x)p(x)pE(y)

Marginalized encoding distribution

xi

pE(y |xi)

Every  is mapped to the whole  spoiling conditionality of  on .xi ∼ p(x) p(y) y x

01 / 12Jessica N. Howard July 6 - July 8, 2021

https://arxiv.org/pdf/1711.01558.pdf
https://arxiv.org/pdf/1711.01558.pdf


(S)WAE Details

• Wasserstein Autoencoders (WAE)[1] loss function 

[1] Tolstikhin, Ilya, et al. arXiv: 1711.01558      [2] Kolouri, Soheil, et al. arXiv: 1804.01947

Theoretically arbitrary 
(incl. KL-divergence)

Minimizing L WAE  minimizes the Wasserstein distance between  and pD(x) p(x)

 L WAE = 𝔼x∼p(x)𝔼pE(z|x)𝔼x̃∼pD(x|z)[c(x, x̃)] + λ dZ(pE(y), p(y))
L LatentL Data

• Sliced Wasserstein Autoencoders (SWAE)[2] argue that  should also be Optimal Transport baseddZ
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(S)WAE Details

• Sliced Wasserstein Autoencoders (SWAE)[2] wanted to solve additional problems arising from the 
use of KL-divergence or other similar cost functions

[1] Tolstikhin, Ilya, et al. arXiv: 1711.01558      [2] Kolouri, Soheil, et al. arXiv: 1804.01947

Problem #2:  
KL-divergence is bad for non-overlapping distributions

Im
ag

e 
fro

m
 [2

]p(x) q(x)

KL-divergence
Wasserstein Distance

Problem #3:  
Inability to have an arbitrary latent-space priors  

which are only known from samples

p(y) p(y)

Examples of possible latent-space priors
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(S)WAE Details

• Wasserstein Autoencoders (WAE)[1] loss function 

Minimizing L WAE  minimizes the Wasserstein distance between  and pD(x) p(x)

• Sliced Wasserstein Autoencoders (SWAE)[2] argue that  should also be Optimal Transport baseddZ

• Choose   to be the Sliced Wasserstein DistancedZ

 L SWAE = 𝔼x∼p(x)𝔼pE(z|x)𝔼x̃∼pD(x|z)[c(x, x̃)] + λ dSW(pE(z), p(z))

• To understand why  solves these problems we first need to understand the  
Wasserstein Distance, 

dSW
dW

[1] Tolstikhin, Ilya, et al. arXiv: 1711.01558      [2] Kolouri, Soheil, et al. arXiv: 1804.01947

Theoretically arbitrary 
(incl. KL-divergence)

 L WAE = 𝔼x∼p(x)𝔼pE(z|x)𝔼x̃∼pD(x|z)[c(x, x̃)] + λ dZ(pE(y), p(y))
L LatentL Data
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(S)W Distance Details

• Wasserstein Distance, , measures the cost to morph one 
distribution into another via the optimal transport plan

dW

According to the optimal transport plan

Wasserstein Distance 
(Earth Mover’s Metric)

 is the cost of moving it some distance to 
form a pile with a different shape

dW

Given a pile of dirt

• Where  and  are the inverse-CDFs of the distributions

• These can be approximated from finite samples (EDF)

F−1(t) G−1(t)

• Only tractable for univariate probability distributions

dW1
= ∫

1

0
dt |F−1(t) − G−1(t) |α α ≥ 1

• Because the optimal transport plan is known
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(S)W Distance Details

• Sliced Wasserstein Distance, , approximates the 
Wasserstein Distance, , and is calculated by

dSW
dW

• Projecting multivariate distributions onto many 1D slices


•Calculating  along each of those slices


• Averaging the result
dW1

PDFs

“Slice” both distributions to get univariate PDFs • In the limit of infinite slices, dSW = dW
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(S)W Distance Details

 finite samples,  random slices M L

̂dSW =
1

L * M

L

∑
l=1

M

∑
m=1

c((θl ⋅ zm)sorted, (θl ⋅ z̃m)sorted)

We only need samples to calculate dSW

• How this solves the problems:

Problem #2:  
KL-divergence is bad for non-overlapping distributions

 is a true distance metric, unlike KL-divergence 
so it is always well-defined
dSW

Problem #3:  
Inability to have an arbitrary latent-space priors  

which are only known from samples
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Test case 1: pp → Z → e+e−

• Z space:  and  4-momenta from Madgraph5 → [8 dimensions]e+ e− Note that X and Z do not need to 
have the same dimensions,  

but do in these tests

• Test case 1: pp → Z → e+e−

• X space:  and  4-momenta from Delphes → [8 dimensions]e+ e−

• Additional constraints on mapping

• Additional constraints on properties of Z space and X space 

• Explicitly enforce the Minkowski metric as part of output of the network

L A,E  = 𝔼x∼p(x)𝔼z̃∼pE(z|x)[1 − p̂e−

x ⋅ p̂e−

z̃ ] L A,D  = 𝔼z∼p(z)𝔼x̃′ ∼pD(x|z)[1 − p̂e−

z ⋅ p̂e−

x̃′ 
]

• We “anchor” the direction of the  momentum (fix the basis) with two additional lossese−

Initially, the network picked up on this implicit relationship but its explicit inclusion improved the results
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Test Case 2:  (semileptonic)pp → tt̄

• X space: , , and  4-momenta from Delphes e− MET jets

• Test case 2:  (semileptonic)pp → tt̄
• Z space: , , , , , and   4-momenta from Madgraph5 →  [24 dimensions]e− ν̄e b b̄ u d̄

• Technical difficulties introduced

• Strict PT threshold for jets is difficult for a network to learn

• Number of jets changes event to event

• Quarks do not always map to the same jets (permutation)

Imposed this explicitly

General treatment requires a 
better way to structure the data

• Restrict to final state of exactly 4 jets →  [24 dimensions]
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Dealing with the PT threshold

• Jets with PT< 20 GeV are excluded from our X space data 

• This threshold is not a property of the detector’s transformation 
rather it is imposed on the data

• If our goal is to learn the detector’s transformation, we need a work around

• We only have access to a truncated version, , of the true X space data distribution, p(x) p*(x)

• Practically this means

• Only “passing” samples are used to calculate the data loss 

• Data loss term is weighted by the passing rate

But this does not mean 
that there are no jets  

with PT < 20 GeV !

Not ideal in all cases

• Fortunately the math behind the modification is pretty straightforward 

p(x) ∝ p*(x)1S(x) where 1S(x) = 1
0

if x ∈ S
otherwise{

• ResNet architecture was used for stable training  an initial identity bias→
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Unfolding Results: Latent Space (Z)

Positron ( )e+ b Quark

pp → Z → e+e− pp → tt̄
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OTUS in other problems

•OTUS theoretically could be applied to any problem attempting to learn a 
transformation between arbitrary probability distributions

•Useful features:

• Mappings can be deterministic or stochastic

• The spaces can have the same or different dimensions

• Distributions can have a known form or only be known from samples (  vs )


• Note that using  requires a large number of samples to accurately estimate the EDFs
dSW

̂dSW
̂dSW

•Other options:

• Train only the decoder (or encoder) using  as the loss (GAN alternative) with additional 

mapping constraints

• Use a semi-supervised setup by substituting in an alternate estimation of  


• If pairs {z, x} are known the transportation path is fixed resulting in an upper bound on 

̂dSW

dW
dW
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