



## ML4Jets hybrid July 6-8 2021





# Machine learning in jet physics beyond jet classification at CMS

Loukas Gouskos (CERN)
on behalf of the CMS Collaboration



### **Motivation**



- Jets: essential for the success of the LHC physics program
  - both for standard model (SM) and beyond SM (BSM) physics analyses

Key for success: Well calibrated jets & constantly improving our "JetToolboox"

- → particularly important these days that LHC integrated luminosity increases only ~linearly with time & do not expect big jumps in collision energy
- Machine learning (ML) tools proven to be very powerful in jet physics
  - Jet classification paved the way:





### **Motivation**



- Jets: essential for the success of the LHC physics program
  - both for standard model (SM) and beyond SM (BSM) physics analyses

**Key for success:** Well calibrated jets & constantly improving out "JetToolboox" particularly important these days that LHC integrated luminosity increases only "linearly with





### Jet tagging calibration



- We are entering an era of extensive and deep understanding of the performance of the new generation tagging tools in data
  - ◆ Calibrate taggers → derive "scale factors" [SF] using a suite of data samples
  - Next big bet: Use these results to improve/tune MC generators
- e.g.,: b-tagging discriminant shape calibration

**CMS-PAS-BTV-15-001** 

- ◆ Traditional approach: Method relies on a "Tag-&-Probe" method in 2L events
  - Tag jet: Define <u>b-enriched</u> (tt2L) and <u>b-depleted</u> (DY) samples based on a selection on the b-tagging discriminant
  - Probe jet: Derive SFs following an iterative approach
    - subtract contribution from other flavours
       [e.g., light contribution in b-enriched region]

$$SF_{f,i+1} = \frac{Data - \omega_i \cdot MC_{\neg f}}{MC_f} \Big|_{R=R(f)}$$

$$\omega = \prod_j^{\text{jets}} SF_j$$

#### b-tagging shape SFs





### Jet tagging calibration (II)



- Yet: lots of room for improvement
  - SFs binned in  $p_T$  (jet),  $\eta$ (jet) and b-tagging discriminant
    - Ensure that each bin has sufficient stats (tedious..)
    - Not straight forward to include additional variables
  - Challenging to include additional control regions
    - e.g., finer flavor splitting of the b-depleted region
  - Results could be sensitive to fluctuations; finding the right fit function challenging





### Jet tagging calibration with ML



CMS-DP-2019-003

- ML can be a powerful tool in this topic
  - simplify procedure
  - improve precision and add flexibility
- ML-based approach: Develop a DNN per jet flavor to minimize the diff b/w data and MC





### Jet tagging calibration with ML (II)





- Traditional SFs: A single value / discriminant bin
- DeepSFs: Different values / discriminant bin due to the direct dependence on  $p_T(jet)$ ,  $\eta(jet)$ , etc..
  - Entire procedure repeated 25 times w/ different random seeds
  - Final DeepSFs: ensemble of the each of 25 outcomes

CMS-DP-2019-003



### Jet calibration with ML (III)



Impact on the b-tagging discriminant

CMS-DP-2019-003



- Consistent results between <u>traditional</u> and <u>ML-based</u> approach
- Work in progress: evaluate full list of systematics + application on physics analyses



### Improving b-jet energy scale and resolution



- Precise estimation of the b-quark energy challenging
  - mainly due to energy loss via (undetected) neutrinos from semileptonic decays (~20%)
  - mis-reconstructed tracks and/or tracks outside jet cone, etc..



- Goal: Improve b-jet energy scale & resolution
  - Enhanced sensitivity in analyses with b-jets [Higgs, DiHiggs, BSM, etc..]





- Previous attempts: shallow ML [BDT] and limited number of inputs
  - New algorithm exploits Deep Neural Networks (DNN)



### Algorithm design

CMS CSBS 4 (2020) 10

Provide an energy scale correction and a jet-by-jet energy resolution:



#### mean estimator: Huber loss

$$H_{\delta}(z) = egin{cases} rac{1}{2}z^2, & ext{if } |z| < \delta; \ \delta|z| - rac{1}{2}\delta^2, & ext{otherwise,} \end{cases}$$

#### resolution estimator: Quantile loss

$$\rho_{\tau}(z) = \begin{cases} \tau z, & \text{if } z > 0; \\ (\tau - 1)z, & \text{otherwise,} \end{cases}$$

olution estimator (75%-25%)/2



### Algorithm design + results



#### Inputs (43 in total):

- Jet kinematics
- Jet composition
- PU information
- Info about semi-leptonic decays
- Secondary vertex (SV) properties

#### **DNN** architecture

- Fully connected network
- 6 Layers

### Outputs:

CSBS 4 (2020) 10

scale correction 25% quantile 75% quantile





Much flatter jet response and narrower width



### Impact on physics analyses



First application: Observation of the Higgs boson decaying a b-quark pair



in mass resolution

Similar algorithm developed for c-jets



~10% gain in sensitivity with the DNNbased b-jet energy regression tool





### Large-R jet mass regression

Large-R jet

CMS

- Jet mass: powerful observable for tagging boosted objects
  - but very sensitive to soft radiation, pileup, ...
- Grooming techniques [e.g., SoftDrop] have been developed to mitigate this effect:
  - Iteratively decluster the jet and remove constituents that are:
    - soft and/or wide angle
  - Pros: simple and well tested in data
  - Cons: some inefficiency
    - e.g., some two prong jet identified as 1-prong
      - m(jet)-> 0 GeV; Higgs jet ~ QCD jet
- Goal: Develop an algorithm able to reconstruct jet mass with best possible scale and resolution
  - Meanwhile: avoid "sculpting" QCD jet mass distribution





### Large-R jet mass regression



- Exploit ParticleNet architecture to predict m(jet) directly from jet constituents
  - Same inputs (PF candidates + SV) and same samples as for ParticleNet jet tagging



PRD 101, 056019 (2020) CMS-DP-2020-002



### Large-R jet mass regression

New! CMS-DP-2021/017

- Exploit ParticleNet architecture to predict m(jet) directly from jet constituents
  - Same inputs (PF candidates + SV) and same samples as for ParticleNet jet tagging



■ Focus on Higgs (or generally 2-prong jets) for two jet sizes (R=0.8, R=1.5)



### **Training details**



New! CMS-DP-2021/017

- Samples: Dedicated samples to populate the full mass range
  - equal amount of QCD, X->bb, X->cc, X->qq jets [X: scalar w/ different masses]



- Target mass:
  - Signal: X pole mass [15-250 GeV]
  - Background: Generated softdrop mass

Loss function: 
$$L(y, y^p) = \sum_{i=1}^n \log(\cosh(y_i^p - y_i))$$



### **Performance**

New! CMS-DP-2021/017

Signal jets: H->bb



**Background jets: QCD** 



- Substantial improvement in both mass scale & mass resolution
- Tails in m(SD) significantly reduced



### Performance (II)

New! CMS-DP-2021/017

Signal jets: H->cc

Signal jets: H->qq





- Improvement for all jet flavours



### **Performance (III)**

New! CMS-DP-2021/017

#### Mass resolution vs. m(X)



#### Regressed Mass vs. Tagger WP



- Mass resolution stable across m(X)
- No indication of mass sculpting even for very tight WPs
- Up to ~20-25% improvement in analysis sensitivity with H->bb/cc



### **Summary**



- Physics with jets essential for the success of the LHC physics program
  - Large effort in both Experiment and Theory communities to improve/extend jet tools
- Major role in these developments: Advanced ML techniques
  - Started with jet flavour tagging
    - showing impressive improvement in performance
  - ML-based application extend to other important jet physics tasks
    - jet calibration, improvement of jet energy and mass reconstruction
- These efforts pays off yielding substantial improvements in physics analyses
  - Still lots of room for improvement / new ideas to try