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MOTIVATION

At high energy, muons no longer behave as
minimum ionising particles

®  Radiative losses increase with energy

By recording these low-energy photons in

a granular calorimeter we gain a
complementary measurement of muon
energy

But radiation is still low, e.g. 0.23%@ | TeV
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.030001

®  Reasonable to assume that the total deposited energy
provides information the muon energy:
° But radiation due to stochastic processes
° Cannot precisely rescale reco energy to true energy

° ATLAS does demonstrates that the E-sum is still useful
in Nikolopolous et al. 2007

®  Can the spatial info of the deposits help?
° Could summariase deposits with high-level features

° Relies on our domain-knowledge
®  Can we work with the raw-hit data and learn to
predict the muon energy?

° 3D CNN could be used to run over the calo cells and
learn to extract better HL features

Can still use HL-feature as additional inputs

APPROACH

Image source: ashenoy ai.stackexchange.com
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CALORIMETER

®  Lead tungstate block
®  (2032x120x120 mm (z,x,y))
®  Subdivided into 39.6x3.75x3.75 mm cells
¢ 50x32x32 (z,x,y) cells = 51200 cells total

® Immersed in uniform 2T magnetic field
(along y-axis)

DATA

MUONS

Generated with:

®  Uniform energy,P = p,

®  Uniform x & y in [-20,#20] mm
887k training + validation muons,

continuous energy in [50,8000] GeV

430k testing muons, discrete energy in 400
GeV steps in [100,4100] GeV



TYPICAL MUON

Energy deposits concentrated along flight
path

®  Occasional high concentrations
Magnetic bending slightly visible
Large number of low-energy deposits

Relatively sparse hits

y [mm]



®  Most basic approach: sum up energy

deposits and learn linear correction to
true energy

®  But doesn’t include multiplicity
information

¢ Better to sum up energies according to

®  0-0.01 Gev
¢ 0.01-0.1 GeV
®  >0.1 GeV

®  These are referred to as the E-sum
features

cell energy, i.e. sum of energy in cells with:

HL-FEATURES

® 24 additional HL features computed

Energy measured from bending in calo
Energy spread for range of z depths

Features extracted from clustering of
deposits

Energy Ist moments in x & y

MET



ARCHITECTURE - CNN BLOCK

Residual correction
e Custom 3D CNN arch aims to learn small @ _________________________

corrections to reco. Energy
° Reco. energy summed up by 2x2 filter

®  Correction learnt by residual convolutional layers

° Summed reco. energy is concatenated to output,
so always available to later layers

®  Running BatchNorm, helps with data sparsity
®  Applies running average during training, rather Energy

. than batChWIS'e stafts . pass-th r'ough
° Swish-1 used as activation function

®  Squeeze-excitation block further improves
performance

Data
@ Untrainable
@ Trainable
@ Fixed operation
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ARCHITECTURE - FULL MODEL

Subsequent Downsample
Previous block

Energy

®  Can build deeper networks by not
downsampling the grid

®  Further downsampling uses pre-activation
layout
®  Full CNN contains 12 blocks, followed by
mean and max aggregation
® 51,200 inputs — 98 features

®  CNN head outputs combined with HL
features and fed through 3 FC layers

Data
Untrainable
Trainable

Fixed operation
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LOSS FUNCTION

®  MSE places too much emphasis on
high-energy
®* 5% error @ 100 GeV =25 SE
® 5% error @ 1000 GeV = 2500 SE

¢  Due to higher radiation levels, high ener: 1 i ~ N2
g , high energy Lo i) = (Yn — Un)
(y,9) = N ,

muons easier to predict

® Instead use calo-inspired mean fractional
squared error (MFSE) n=
®* 5%error @ 100 GeV = 0.25 SE
®* 5%error @ 1000 GeV = 2.5 SE

®  Lower dependence on true energy

10



® Radiative losses are a stochastic process

° Can have low energy muons with lots of
radiation, & vice versa

®  Very easy to have outliers in data, whose poor
predictions dominate the loss
®  Huber loss transitions from squared error to
absolute error
° Diminishes the effect of outliers
®  We actually use multiple, adaptive transition
points according to true energy (see backups)
®  For MFSE instead compute Huber loss then divide
by true energy
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TRAINING

Hard boundaries in training data — biassed
regression response

° Train on 50-8000 GeV muons

° Evaluate on 100-4000 GeV muons

° Slightly compensate training by down-weighting

muons above 4 TeV

Batchsize = 256
Train ensemble of 5 models
Each model trained according to:

| -cycle schedule with cosine annealing for 20
epochs

Upto 30 epochs step-decay
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®  Regression predictions are fairly linear with
true energy
®  But tend to slightly over-predict medium
energy and under predict high energy
®  Correct bias via linear fit to predictions in
bins of true energy
®  Inversion of fit provides lookup-function
mapping prediction to true energy (corrected
predictions)
¢  Still some residual bias
[ ]

The correction is fixed using validation data
and then applied to testing data
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RESOLUTION

—— Calorimeter

80 3
®  Compute resolution as RMSE [ i . ///
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Differing energy dependence means calo and

tracker measurements are complementary
°

w
o

Best resolution is a weighted average of both
measurements

w
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Assume here a linear tracker resolution with
20% @ | TeV

The improvement over tracker due to calo
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® Do the HL features help?

¢ Comparing on validation data:

®  HL feats help significantly over using just

the sum of recorded hits

HL feats still beneficial at low energy
when CNN is used
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° Demonstrated that radiative losses in calorimeters can
provide muon-energy measurements in collider experiments

° To our knowledge this is the first such demonstration in
collider context to fully utilise the raw hit information

IceCube previously measured muons but with much larger
calo (20x in rad-lengths)
° Resolutions 10x poorer than ours in our energy range
(although their focus is more on higher-energy muons)
M Abasi et al., 2013 & Aartsen et al., 2014

ATLAS also demonstrated a calorimeter-based method

° But only sums up the deposited energy in cones,
rather than considering the spatial structure of hits

M Nikolopolous et al. 2007

CONCLUSIONS

Calo measurements improve with energy

and are entirely complementary to
existing tracker measurement approaches

®  Allows good resolution across the full
muon-energy spectrum

®  Can improves the sensitivity and reach of
searches for New Physics

Preprint: arXiv:2107.021 19

Data and code will be released soon
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BACKUPS




ENVIRONMENT

SOFTWARE

Networks & training: LUMIN+PyTorch
Data generation: Geant 4
HL-features: ROOT

Data formats: HDF5 (final datasets),
ROOT (raw data)

HARDWARE

® Data generation & feature processing:
batch system

®  Training & inference: NvidiaV100S

¢ Requirements:
®  Training: 5GBVRAM, 23GB RAM, 23*5
hours

® Inference:0.1*5 seconds per batch of 256
muons 8



Suitable transition points from SE to AE
also depend on true energy

¢  Batch divided by true energy into 5 bins

®  Transition point chosen to be 68th
percentile of SE in each bin

Problem: expect 5| muons per bin -
transition point can fluctuate significantly

®  But: want thresholds to vary as training

progresses - shouldn’t fix thresholds

Solution: Loss class tracks running average
of thresholds per bin

ADAPTIVE HUBERISED LOSS

semmipess =T+ (2\/1_5 ('yz — Uil — \/1_5>> ,

where i are indices of the data-points in a
given bin with a squared-error loss greater
than the threshold ¢ for that bin.

The threshold for bin j evolves per
minibatch as:

tj — Ogtj + 0.1 ISE,j,68th'
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ABLATION STUDY




LOSS

MFSE and down-weighting both provide
large benefits

Huberisation provides indication of
improvement

When used, multiple bins should be used
with either fixed, or averaged thresholds

Ablation MI Change in MI [%]
Default 19.42+0.08 N/A

Single bin 19.14 +0.08 —-1.5+0.6
Batchwise thresholds 19.25+0.04 —-0.9+0.5
Non-Huberised loss 19.36 £ 0.06 —0.4+0.5

Fixed thresholds 19.39+0.05 —-0.2+0.5

MSE loss 18.434+0.06 —5.1+0.5

No down-weighting 16.5 == 0.2 —1§.1241.03
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ENSEMBLING & DATA USAGE

Regressors benefit from larger training
datasets

Ensembling recommended if inference
time is not a concern

Ablation Dataset size Times MI
Training [h] Inference [second per batch]

Full ensemble 862 085 113.4 0.47 20.72

Full singles 862 085 22.7 0.091 20.29 +0.04

Unique ensemble 862 085 23.3 0.47 19.83

Unique singles 197048 4.7 0.0.091 19.37 £ 0.08
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CNN ARCH

CNN much better than flattening raw hits

Running BN improves performance and
stability

ResNet layout is useful

Other additional components provide
indications of improvement

Ablation MI Change in MI [%]
Default 19.42+0.08 N/A

No BN 185+ 0.3 —-5=£1

No identity path 18.72 +0.08 —3.6 4 0.6
Nominal BN 19.21+0.2 —-1.1+£0.9

No E-pass 19.30 £0.06 —-0.6£0.5

No SE 19.33+0.09 —-0.5%+0.6

No pooling 194401 —04+0.7

No CNN 17.45+0.09 —-10.2+£0.6
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OTHER ABLATIONS

|-cycle + step-decay provides a 5.2+0.6 % increase in performance and
quicker convergence

® Compared to fixed optimiser hyper-parameters and same number of maximum
possible epochs

Whilst minor, the bias correction improves performance by 2.1%
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