

Calorimetric Measurement of Multi-TeV Muons via Deep Regression

Jan Kieseler, Giles Strong,

Filippo Chiandotto, Tommaso Dorigo, Lukas Layer

ML4JETS, Online - 07/07/21

arXiv:2107.02119 [physics.ins-det]

MOTIVATION

- Muons traditionally used as a clean probe for searches & measurements:
 - Minimal EM losses = easily distinguishable from background objects
 - Energy measurements made via magnetic bending in tracker (+ possible muon system)
- But: radius of curvature increases with energy
 - Poorer resolution at high energy relative uncertainty scales linearly with E
 - Limits usefulness of muons for new-physics searches

MOTIVATION

- At high energy, muons no longer behave as minimum ionising particles
 - Radiative losses increase with energy
- By recording these low-energy photons in a granular calorimeter we gain a complementary measurement of muon energy
- But radiation is still low, e.g. 0.23%@ITeV

APPROACH

- Reasonable to assume that the total deposited energy provides information the muon energy:
 - But radiation due to stochastic processes
 - Cannot precisely rescale reco energy to true energy
 - ATLAS does demonstrates that the E-sum is still useful in Nikolopolous et al. 2007
- Can the spatial info of the deposits help?
 - Could summariase deposits with high-level features
 - Relies on our domain-knowledge
- Can we work with the raw-hit data and learn to predict the muon energy?
 - 3D CNN could be used to run over the calo cells and learn to extract better HL features
 - Can still use HL-feature as additional inputs

DATA

CALORIMETER

- Lead tungstate block
 - (2032×120×120 mm (z,x,y))
 - Subdivided into 39.6x3.75x3.75 mm cells
 - 50x32x32 (z,x,y) cells = 51200 cells total
- Immersed in uniform 2T magnetic field (along y-axis)

MUONS

- Generated with:
 - Uniform energy, $P = p_z$
 - Uniform x & y in [-20,+20] mm
- 887k training + validation muons, continuous energy in [50,8000] GeV
- 430k testing muons, discrete energy in 400
 GeV steps in [100,4100] GeV

TYPICAL MUON

- Energy deposits concentrated along flight path
 - Occasional high concentrations
- Magnetic bending slightly visible
- Large number of low-energy deposits
- Relatively sparse hits

HL-FEATURES

- Most basic approach: sum up energy deposits and learn linear correction to true energy
 - But doesn't include multiplicity information
- Better to sum up energies according to cell energy, i.e. sum of energy in cells with:
 - 0-0.01 GeV
 - 0.01-0.1 GeV
 - >0.1 GeV
- These are referred to as the E-sum features

- 24 additional HL features computed
 - Energy measured from bending in calo
 - Energy spread for range of z depths
 - Features extracted from clustering of deposits
 - Energy 1st moments in x & y
 - MET

ARCHITECTURE - CNN BLOCK

- Custom 3D CNN arch aims to learn small corrections to reco. Energy
 - Reco. energy summed up by 2x2 filter
 - Correction learnt by <u>residual convolutional layers</u>
 - Summed reco. energy is concatenated to output, so always available to later layers
- Running BatchNorm, helps with data sparsity
 - Applies running average during training, rather than batchwise stats
- Swish-I used as activation function
- <u>Squeeze-excitation</u> block further improves performance

ARCHITECTURE - FULL MODEL

- Can build deeper networks by not downsampling the grid
- Further downsampling uses pre-activation layout
- Full CNN contains 12 blocks, followed by mean and max aggregation
 - 51,200 inputs \rightarrow 98 features
- CNN head outputs combined with HL features and fed through 3 FC layers

LOSS FUNCTION

- MSE places too much emphasis on high-energy
 - 5% error @ 100 GeV = 25 SE
 - 5% error @ 1000 GeV = 2500 SE
- Due to higher radiation levels, high energy muons easier to predict
- Instead use calo-inspired mean fractional squared error (MFSE)
 - 5% error @ 100 GeV = 0.25 SE
 - 5% error @ 1000 GeV = 2.5 SE
 - Lower dependence on true energy

$$\mathcal{L}(y, \hat{y}) = \frac{1}{N} \sum_{n=1}^{N} \frac{(y_n - \hat{y_n})^2}{y_n},$$

HUBERISED LOSS

- Radiative losses are a stochastic process
 - Can have low energy muons with lots of radiation, & vice versa
 - Very easy to have outliers in data, whose poor predictions dominate the loss
- Huber loss transitions from squared error to absolute error
 - Diminishes the effect of outliers
 - We actually use multiple, adaptive transition points according to true energy (see backups)
- For MFSE instead compute Huber loss then divide by true energy

TRAINING

- Hard boundaries in training data → biassed regression response
 - Train on 50-8000 GeV muons
 - Evaluate on 100-4000 GeV muons
 - Slightly compensate training by down-weighting muons above 4 TeV
- Batchsize = 256
- Train ensemble of 5 models
- Each model trained according to:
 - <u>I-cycle</u> schedule with <u>cosine annealing</u> for 20 epochs
 - Upto 30 epochs <u>step-decay</u>

PREDICTIONS

- Regression predictions are fairly linear with true energy
 - But tend to slightly over-predict medium energy and under predict high energy
 - Correct bias via linear fit to predictions in bins of true energy
 - Inversion of fit provides lookup-function mapping prediction to true energy (corrected predictions)
 - Still some residual bias
- The correction is fixed using validation data and then applied to testing data

RESOLUTION

- Compute resolution as RMSE
 - Quadrature sum of variance and residual bias
- Differing energy dependence means calo and tracker measurements are complementary
 - Best resolution is a weighted average of both measurements
 - Assume here a linear tracker resolution with 20% @ I TeV
 - The improvement over tracker due to calo regression is useable as an optimisation metric

Final results on testing data

INPUT COMPARISON

- Do the HL features help?
- Comparing on validation data:
 - HL feats help significantly over using just the sum of recorded hits
 - HL feats still beneficial at low energy when CNN is used

CONCLUSIONS

- Demonstrated that radiative losses in calorimeters can provide muon-energy measurements in collider experiments
- To our knowledge this is the first such demonstration in collider context to fully utilise the raw hit information
 - IceCube previously measured muons but with much larger calo (20x in rad-lengths)
 - Resolutions 10x poorer than ours in our energy range (although their focus is more on higher-energy muons)
 - Abasi et al., 2013 & Aartsen et al., 2014
 - ATLAS also demonstrated a calorimeter-based method
 - But only sums up the deposited energy in cones, rather than considering the spatial structure of hits
 - Nikolopolous et al. 2007

- Calo measurements improve with energy and are entirely complementary to existing tracker measurement approaches
 - Allows good resolution across the full muon-energy spectrum
 - Can improves the sensitivity and reach of searches for New Physics
- Preprint: <u>arXiv:2107.02119</u>
- Data and code will be released soon

BACKUPS

ENVIRONMENT

SOFTWARE

- Networks & training: LUMIN+PyTorch
- Data generation: Geant 4
- **HL-features: ROOT**
- Data formats: HDF5 (final datasets), ROOT (raw data)

HARDWARE

- Data generation & feature processing: batch system
- Training & inference: Nvidia V 100S
- Requirements:
 - Training: 5GB VRAM, 23GB RAM, 23*5 hours
 - Inference: 0.1*5 seconds per batch of 256 muons

ADAPTIVE HUBERISED LOSS

- Suitable transition points from SE to AE also depend on true energy
 - Batch divided by true energy into 5 bins
 - Transition point chosen to be 68th percentile of SE in each bin
- Problem: expect 51 muons per bin transition point can fluctuate significantly
 - But: want thresholds to vary as training progresses - shouldn't fix thresholds
 - Solution: Loss class tracks running average of thresholds per bin

$$\mathcal{L}_{\mathrm{Huber},i} = t + \left(2\sqrt{t}\left(|y_i - \hat{y_i}| - \sqrt{t}\right)\right),$$

where *i* are indices of the data-points in a given bin with a squared-error loss greater than the threshold *t* for that bin.

The threshold for bin *j* evolves per minibatch as:

$$t_j \leftarrow 0.9t_j + 0.1 \mathcal{L}_{\text{SE}, j.68^{\text{th}}}$$

ABLATION STUDY

LOSS

- MFSE and down-weighting both provide large benefits
- Huberisation provides indication of improvement
 - When used, multiple bins should be used with either fixed, or averaged thresholds

Ablation	MI	Change in MI [%]
Default	19.42 ± 0.08	N/A
Single bin	19.14 ± 0.08	-1.5 ± 0.6
Batchwise thresholds	19.25 ± 0.04	-0.9 ± 0.5
Non-Huberised loss	19.36 ± 0.06	-0.4 ± 0.5
Fixed thresholds	19.39 ± 0.05	-0.2 ± 0.5
MSE loss	18.43 ± 0.06	-5.1 ± 0.5
No down-weighting	16.5 ± 0.2	-15.12 ± 1.03

ENSEMBLING & DATA USAGE

- Regressors benefit from larger training datasets
- Ensembling recommended if inference time is not a concern

Ablation	Dataset size	Times		MI
		Training [h]	Inference [second per batch]	
Full ensemble	862 085	113.4	0.47	20.72
Full singles	862085	22.7	0.091	20.29 ± 0.04
Unique ensemble	862085	23.3	0.47	19.83
Unique singles	197048	4.7	0.0.091	19.37 ± 0.08

CNN ARCH

- CNN much better than flattening raw hits
- Running BN improves performance and stability
- ResNet layout is useful
- Other additional components provide indications of improvement

Ablation	MI	Change in MI [%]
Default	19.42 ± 0.08	N/A
No BN	18.5 ± 0.3	-5 ± 1
No identity path	18.72 ± 0.08	-3.6 ± 0.6
Nominal BN	19.2 ± 0.2	-1.1 ± 0.9
No E-pass	19.30 ± 0.05	-0.6 ± 0.5
No SE	19.33 ± 0.09	-0.5 ± 0.6
No pooling	19.4 ± 0.1	-0.4 ± 0.7
No CNN	17.45 ± 0.09	-10.2 ± 0.6

OTHER ABLATIONS

- I-cycle + step-decay provides a 5.2±0.6 % increase in performance and quicker convergence
 - Compared to fixed optimiser hyper-parameters and same number of maximum possible epochs
- Whilst minor, the bias correction improves performance by 2.1%