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MOTIVATION

• Muons traditionally used as a clean probe for 
searches & measurements:

• Minimal EM losses = easily distinguishable 
from background objects

• Energy measurements made via magnetic 
bending in tracker (+ possible muon system)

• But: radius of curvature increases with energy
• Poorer resolution at high energy - relative 

uncertainty scales linearly with E
• Limits usefulness of muons for new-physics 

searches
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Image source: CMS JINST 3 S08004

~10%@1TeV

~5%@1TeV

~20%@1TeV

~10%@1TeV

https://cds.cern.ch/record/1129810/files/jinst8_08_s08004.pdf


MOTIVATION

• At high energy, muons no longer behave as 
minimum ionising particles

• Radiative losses increase with energy

• By recording these low-energy photons in 
a granular calorimeter we gain a 
complementary measurement of muon 
energy

• But radiation is still low, e.g. 0.23%@1TeV
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Image source: PDG Phys. Rev. D 98, 030001 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.030001


APPROACH

• Reasonable to assume that the total deposited energy 
provides information the muon energy:

• But radiation due to stochastic processes
• Cannot precisely rescale reco energy to true energy
• ATLAS does demonstrates that the E-sum is still useful 

in Nikolopolous et al. 2007
• Can the spatial info of the deposits help?

• Could summariase deposits with high-level features
• Relies on our domain-knowledge

• Can we work with the raw-hit data and learn to 
predict the muon energy?

• 3D CNN could be used to run over the calo cells and 
learn to extract better HL features

• Can still use HL-feature as additional inputs
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Image source: ashenoy ai.stackexchange.com

https://inspirehep.net/literature/771742
https://ai.stackexchange.com/questions/13692/when-should-i-use-3d-convolution/13786#13786


DATA

 CALORIMETER
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• Lead tungstate block 
• (2032x120x120 mm (z,x,y))
• Subdivided into 39.6x3.75x3.75 mm cells
• 50x32x32 (z,x,y) cells = 51200 cells total

• Immersed in uniform 2T magnetic field 
(along y-axis)

MUONS

• Generated with:
• Uniform energy, P = pz

• Uniform x & y in [-20,+20] mm

• 887k training + validation muons, 
continuous energy in [50,8000] GeV

• 430k testing muons, discrete energy in 400 
GeV steps in [100,4100] GeV  



TYPICAL MUON

• Energy deposits concentrated along flight 
path

• Occasional high concentrations

• Magnetic bending slightly visible

• Large number of low-energy deposits

• Relatively sparse hits
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HL-FEATURES
• Most basic approach: sum up energy 

deposits and learn linear correction to 
true energy

• But doesn’t include multiplicity 
information

• Better to sum up energies according to 
cell energy, i.e. sum of energy in cells with:

• 0-0.01 GeV
• 0.01-0.1 GeV
• >0.1 GeV

• These are referred to as the E-sum 
features

• 24 additional HL features computed
• Energy measured from bending in calo
• Energy spread for range of z depths
• Features extracted from clustering of 

deposits
• Energy 1st moments in x & y
• MET
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ARCHITECTURE - CNN BLOCK

• Custom 3D CNN arch aims to learn small 
corrections to reco. Energy

• Reco. energy summed up by 2x2 filter
• Correction learnt by residual convolutional layers
• Summed reco. energy is concatenated to output, 

so always available to later layers
• Running BatchNorm, helps with data sparsity

• Applies running average during training, rather 
than batchwise stats

• Swish-1 used as activation function
• Squeeze-excitation block further improves 

performance
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Residual correction

Energy
pass-through

https://arxiv.org/abs/1512.03385
https://course19.fast.ai/videos/?lesson=10
https://arxiv.org/abs/1710.05941
http://dx.doi.org/10.1109/CVPR.2018.00745


ARCHITECTURE - FULL MODEL

• Can build deeper networks by not 
downsampling the grid

• Further downsampling uses pre-activation 
layout

• Full CNN contains 12 blocks, followed by 
mean and max aggregation

• 51,200 inputs → 98 features

• CNN head outputs combined with HL 
features and fed through 3 FC layers
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DownsampleSubsequent



LOSS FUNCTION

• MSE places too much emphasis on 
high-energy

• 5% error @ 100 GeV = 25 SE
• 5% error @ 1000 GeV = 2500 SE

• Due to higher radiation levels, high energy 
muons easier to predict

• Instead use calo-inspired mean fractional 
squared error (MFSE)

• 5% error @ 100 GeV = 0.25 SE
• 5% error @ 1000 GeV = 2.5 SE
• Lower dependence on true energy
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HUBERISED LOSS

• Radiative losses are a stochastic process
• Can have low energy muons with lots of 

radiation, & vice versa
• Very easy to have outliers in data, whose poor 

predictions dominate the loss
• Huber loss transitions from squared error to 

absolute error
• Diminishes the effect of outliers
• We actually use multiple, adaptive transition 

points according to true energy (see backups)
• For MFSE instead compute Huber loss then divide 

by true energy
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TRAINING

• Hard boundaries in training data → biassed 
regression response

• Train on 50-8000 GeV muons
• Evaluate on 100-4000 GeV muons
• Slightly compensate training by down-weighting 

muons above 4 TeV
• Batchsize = 256
• Train ensemble of 5 models
• Each model trained according to:

• 1-cycle schedule with cosine annealing for 20 
epochs 

• Upto 30 epochs step-decay
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http://arxiv.org/abs/1803.09820
https://docs.fast.ai/callback.schedule.html#combined_cos
http://arxiv.org/abs/1603.05027


PREDICTIONS

• Regression predictions are fairly linear with 
true energy

• But tend to slightly over-predict medium 
energy and under predict high energy

• Correct bias via linear fit to predictions in 
bins of true energy

• Inversion of fit provides lookup-function 
mapping prediction to true energy (corrected 
predictions)

• Still some residual bias
• The correction is fixed using validation data 

and then applied to testing data
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RESOLUTION

• Compute resolution as RMSE
• Quadrature sum of variance and residual bias

• Differing energy dependence means calo and 
tracker measurements are complementary

• Best resolution is a weighted average of both 
measurements

• Assume here a linear tracker resolution with 
20% @ 1 TeV

• The improvement over tracker due to calo 
regression is useable as an optimisation 
metric

14Final results on testing data



INPUT COMPARISON

• Do the HL features help?

• Comparing on validation data:
• HL feats help significantly over using just 

the sum of recorded hits
• HL feats still beneficial at low energy 

when CNN is used
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CONCLUSIONS

• Demonstrated that radiative losses in calorimeters can 
provide muon-energy measurements in collider experiments

• To our knowledge this is the first such demonstration in 
collider context to fully utilise the raw hit information

• IceCube previously measured muons but with much larger 
calo (20x in rad-lengths)

• Resolutions 10x poorer than ours in our energy range 
(although their focus is more on higher-energy muons)

• Abasi et al., 2013 & Aartsen et al., 2014

• ATLAS also demonstrated a calorimeter-based method 
• But only sums up the deposited energy in cones, 

rather than considering the spatial structure of hits
• Nikolopolous et al. 2007

• Calo measurements improve with energy 
and are entirely complementary to 
existing tracker measurement approaches

• Allows good resolution across the full 
muon-energy spectrum

• Can improves the sensitivity and reach of 
searches for New Physics

• Preprint: arXiv:2107.02119

• Data and code will be released soon
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https://www.sciencedirect.com/science/article/abs/pii/S0168900212014234?via%3Dihub
https://iopscience.iop.org/article/10.1088/1748-0221/9/03/P03009
https://inspirehep.net/literature/771742
https://arxiv.org/abs/2107.02119


BACKUPS
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ENVIRONMENT

SOFTWARE

• Networks & training: LUMIN+PyTorch

• Data generation: Geant 4

• HL-features: ROOT

• Data formats: HDF5 (final datasets), 
ROOT (raw data)
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HARDWARE

• Data generation & feature processing: 
batch system

• Training & inference: Nvidia V100S

• Requirements:
• Training: 5GB VRAM, 23GB RAM, 23*5 

hours
• Inference: 0.1*5 seconds per batch of 256 

muons 



ADAPTIVE HUBERISED LOSS

• Suitable transition points from SE to AE 
also depend on true energy

• Batch divided by true energy into 5 bins
• Transition point chosen to be 68th 

percentile of SE in each bin

• Problem: expect 51 muons per bin - 
transition point can fluctuate significantly

• But: want thresholds to vary as training 
progresses - shouldn’t fix thresholds

• Solution: Loss class tracks running average 
of thresholds per bin
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where i are indices of the data-points in a 
given bin with a squared-error loss greater 
than the threshold t for that bin.

The threshold for bin j evolves per 
minibatch as:



ABLATION STUDY
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LOSS

• MFSE and down-weighting both provide 
large benefits

• Huberisation provides indication of 
improvement

• When used, multiple bins should be used 
with either fixed, or averaged thresholds

21



ENSEMBLING & DATA USAGE

• Regressors benefit from larger training 
datasets

• Ensembling recommended if inference 
time is not a concern
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CNN ARCH

• CNN much better than flattening raw hits

• Running BN improves performance and 
stability

• ResNet layout is useful

• Other additional components provide 
indications of improvement
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OTHER ABLATIONS

• 1-cycle + step-decay provides a 5.2±0.6 % increase in performance and 
quicker convergence
• Compared to fixed optimiser hyper-parameters and same number of maximum 

possible epochs

• Whilst minor, the bias correction improves performance by 2.1%
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