[10.1007/JHEP05\(2021\)208](https://link.springer.com/article/10.1007/JHEP05(2021)208)

EXPLAINABLE AI FOR ML JET TAGGERS

1

Garvita Agarwal, Lauren Hay, Ia Iashvili, Benjamin Mannix, *Christine McLean*, Margaret Morris, Salvatore Rappoccio, Ulrich Schubert

ML4Jets2021 July 8, 2021

University at Buffalo The State University of New York

Motivation

https://doi.org/10.1007/978-3-030-28954-6_10

How do we understand the network's decision-making process?

ML explainability with LRP

LRP (layer-wise relevance propagation) propagates a prediction backwards through the network, assigning a relevance to each input

ML explainability with LRP

- **• Relevance is conserved** the prediction is not changed
- **• LRP attributes the entirety of the network's decision to the inputs**

• Visualized as a heat map, in the case of images

Little Schools ML explainability with XAUG Variables

- **• Goal:** explain decisions of ML jet classifiers using expert augmented (XAUG) variables
- **• Method:** Input XAUGs into jet tagger, analyze network decision with LRP, and compare to network without XAUGs

5

TOY MODEL

6

- **• Toy events simulated to mimic particle-level events**
- **• Goal: capture all event information with a few variables** Toy Model θ Distribution

• Image pre-processing

- \cdot Leading-p_T subjet at (0,0), sub-leading at (0,-1)
- Parity flip

July 8th, 2021 Christine McLean

2DCNN

Architecture based on ImageTop network

9 [10.1088/1748-0221/15/06/P06005](https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005)

1DCNN

Architecture based on DeepAK8 jet classifier

ML4Jets2021 July 8th, 2021 Christine McLean

[10.1088/1748-0221/15/06/P06005](https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005)

Toy 2DCNN LRP Heatmaps

Toy 2DCNN Results

Mean Normalized Relevance
Mean Normalized Relevance
0. 4
0. 4

 0.2

 0.0

Image

C

Feature Significance for Model 1

• Mean normalized relevance

- **For each event:** find feature with max absolute LRP score, divide all scores by this max value
	- **For each image:** sum absolute value of normalized pixels to get a single image LRP score
- Mean Normalized Relevance
Mean Normalized Relevance
0.2
0.2 **• For each feature:** 0.0 Image C C) average normalized relevance scores across all events

12

Feature Significance for Model 2

- **• Profile plots:** relevance vs corresponding input variable
- **•** For some profiles relevance appears to reflect input distribution, but other don't - **networks' decision boundaries live in a higher dimensional space**

Toy 2DCNN Results

Toy 1DCNN Results

July 8th, 2021 Christine McLean

PYTHIA MODEL

16

Pythia Model

• Simulated with Pythia8

- Signal: SM ZZ , $Z \rightarrow b\bar{b}$
- QCD

• Jets

- Consider leading AK8 jet
- \cdot p_T > 200 GeV
- mMDT: $z_{cut} = 0.1$, $\beta = 0$

• Preprocessing

- Normalize inputs wrt to jet p_T
- Same as toy model

ML 4 Jets 202 ^{*} July 8th, 2021 Christine McLean

Use same network structure as toy model; replace particle-level inputs

July 8th, 2021 Christine McLean

Pythia LRP Heatmaps

Pythia 1DCNN Results

Darker markers: higher absolute relevance score OCD \bullet QCD \bullet \bullet QCD 1.0 1.0 1.0 1.0 -1.0 1.0 0.8 0.8 0.8 Rescaled $\tau_{3,sd}^{(1)}$ Rescaled mjet Rescaled Δ_f 0.6 0.6 0.6 0.4 0.4 0.4 0.2 $\frac{1}{2}0.1$ 0.2 0.2 -0.1 $0.0\begin{array}{c} 0.0 \ \hline 0.0 \end{array}$ 0.0 0.0 _{0.0} 0.1 **Decision** 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.2 0.4 0.6 0.8 1.0 Rescaled miet, sd Rescaled miet, sd Rescaled z **boundaries:** \bullet Zbb Zbb Zbb not as clear as \bullet 1.0 1.0 1.0 1.0 -1.0 1.0 for toy model 0.8 0.8 0.8 Rescaled $\tau_{3,sd}^{(1)}$ Rescaled Δ_{r} 0.6 0.6 0.6 0.4 0.4 0.4 $\frac{1}{2}$ 0.1 0.2 -0.1 0.2 0.2 $0.0_{0.0}$ 0.0 6.0 0.1 $0.0_{0.0}$ 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 Rescaled mjet, sd Rescaled mjet, sd Rescaled z

20

ML4Jets2021 July 8th, 2021 Christine McLean

Rescaled mjet

Pythia 1DCNN Results

Particle list: highest relevance for all models

Pythia 2DCNN Results

Image and dz,max: highest relevance, depending on the model

July 8th, 2021 Christine McLean

List Pythia Results: Model Comparisons

• Images only does worst • Particle List + XAUGs does best

• Particle list + 5 XAUGS comparable

- **• Introduced novel method for ML tagger explainability:** LRP + expert augmented variables
	- Help explain network decisions, and relevant subspaces

• XAUGs

- Can boost classification performance
- Can entirely capture relevant information of lower-level networks

• XAUGs + LRP

- Can be used to reduce list of network inputs
- Can be used to quantify numerical uncertainty in DNN training

ADDITIONAL MATERIAL

25

LRP Propagation Rules

• LRP-z

- Redistributes the relevance in proportion to the contributions to the neuron activation.
- Gradient X Input \rightarrow Noisy

$$
R_j = \sum_k \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k
$$

• LRP- *ϵ*

- \cdot ϵ absorbs some relevance for weak and/or contradictory contributions.
- For large ϵ only salient explanation factors survive the absorption \rightarrow Less Noisy
- **• Used in our networks' dense layers**

• LRP- *α*1*β*⁰

• Limiting effect on how large positive and negative relevance can grow \rightarrow Stable Explanations

• Used in our networks' convolution layers

$$
R_j = \sum_k \frac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k
$$

$$
R_j = \sum_k \left(\alpha \frac{(a_j w_{jk})^+}{\sum_{0,j} (a_j w_{jk})^+} - \beta \frac{(a_j w_{jk})^-}{\sum_{0,j} (a_j w_{jk})^-} \right) R_k
$$

Toy Model Inputs

Christine McLean

Particle List Inputs

Variable $log(p_T)$ $log(p_T/p_{T_{jet}})$ $log(E)$ $|\eta|$ $\Delta\phi(jet)$ $\Delta \eta (jet)$ $\Delta R(jet)$ $\Delta R(subjet1)$ $\Delta R(subjet2)$ Charge q isMuon isElectron isPhoton isChargedHadron isNeutralHadron d_{xy} d_z

Pythia Model Preprocessing

1. Cut on softdrop mass: keep jets with msp 50-150 GeV 2. Numerical rescaling

- 1. Rebin outliers to *mean + 3(std)* and *mean 3(std)*
- 2. Input distributions are then rescaled from 0 to 1:

Pythia Model 1D LRP Plots

higher dimensional Profiles don't show clear decision boundary - need plots

 1.0

 0.8

 0.8

 1.0

July 8th, 2021 Christine McLean