10.1007/JHEP05(2021)208

EXPLAINABLE AI FOR ML JET TAGGERS

Garvita Agarwal, Lauren Hay, la lashvili, Benjamin Mannix, *Christine McLean*, Margaret Morris, Salvatore Rappoccio, Ulrich Schubert

ML4Jets2021 July 8, 2021

University at Buffalo The State University of New York

Motivation

https://doi.org/10.1007/978-3-030-28954-6_10

How do we understand the network's decision-making process?

ML explainability with LRP

LRP (layer-wise relevance propagation) propagates a prediction backwards through the network, assigning a relevance to each input

ML explainability with LRP

- Relevance is conserved the prediction is not changed
- LRP attributes the entirety of the network's decision to the inputs

• Visualized as a heat map, in the case of images

ML explainability with XAUG Variables

- Goal: explain decisions of ML jet classifiers using expert augmented (XAUG) variables
- Method: Input XAUGs into jet tagger, analyze network decision with LRP, and compare to network without XAUGs

5

TOY MODEL

- Toy events simulated to mimic particle-level **events**
- Goal: capture all event information with a few variables Toy Model θ Distribution

Signal

0.15

θ

Signal

Background

0.8

Ζ

0.20

0.25

0.9

0.30

0.10

0.6

0.7

Background

Image pre-processing

- Leading-p_T subjet at (0,0), sub-leading at (0,-1)
- Parity flip

2DCNN

Architecture based on ImageTop network

9

ML4Jets2021 July 8th, 2021 Christine McLean

10.1088/1748-0221/15/06/P06005

1DCNN

Architecture based on DeepAK8 jet classifier

Toy 2DCNN LRP Heatmaps

11

Mean normalized relevance

- For each event: find feature with max absolute LRP score, divide all scores by this max value
 - For each image: sum absolute value of normalized pixels to get a single image LRP score
- For each feature: 0.0 Image 5 average normalized relevance scores across all events

12

- Profile plots: relevance vs corresponding input variable
- For some profiles relevance appears to reflect input distribution, but other don't - networks' decision boundaries live in a higher dimensional space

Toy 2DCNN Results

Ъ

Toy 1DCNN Results

PYTHIA MODEL

Pythia Model

Simulated with Pythia8

- Signal: SM ZZ, $Z \rightarrow b\bar{b}$
- QCD

• Jets

- Consider leading AK8 jet
- p_T > 200 GeV
- mMDT: $z_{cut} = 0.1$, $\beta = 0$

Preprocessing

- Normalize inputs wrt to jet p_T
- Same as toy model

Use same network structure as toy model; replace particle-level inputs

July 8th, 2021 Christine McLean Pythia LRP Heatmaps

Pythia 1DCNN Results

Darker markers: higher absolute relevance score

20

Pythia 1DCNN Results

Particle list: highest relevance for all models

21

Pythia 2DCNN Results

Image and d_{z,max}: highest relevance, depending on the model

July 8th, 2021 Christine McLean

Pythia Results: Model Comparisons

Images only does worst
Particle List + XAUGs does best

• Particle list + 5 XAUGS comparable

ML4Jets2021 July 8th, 2021 Christine McLean

- Introduced novel method for ML tagger explainability: LRP + expert augmented variables
 - Help explain network decisions, and relevant subspaces

• XAUGs

- Can boost classification performance
- Can entirely capture relevant information of lower-level networks

• XAUGs + LRP

- Can be used to reduce list of network inputs
- Can be used to quantify numerical uncertainty in DNN training

ADDITIONAL MATERIAL

LRP Propagation Rules

• LRP-z

- Redistributes the relevance in proportion to the contributions to the neuron activation.
- Gradient X Input \rightarrow Noisy

$$R_j = \sum_k \frac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$$

• LRP- ϵ

- ϵ absorbs some relevance for weak and/or contradictory contributions.
- For large *ε* only salient explanation factors survive the absorption → Less Noisy
- Used in our networks' dense layers

• LRP- $\alpha_1\beta_0$

 Limiting effect on how large positive and negative relevance can grow
 → Stable Explanations

Used in our networks' convolution layers

$$R_j = \sum_k \frac{a_j w_{jk}}{\epsilon + \sum_{0,j} a_j w_{jk}} R_k$$

$$R_{j} = \sum_{k} \left(\alpha \frac{(a_{j}w_{jk})^{+}}{\sum_{0,j} (a_{j}w_{jk})^{+}} - \beta \frac{(a_{j}w_{jk})^{-}}{\sum_{0,j} (a_{j}w_{jk})^{-}} \right) R_{k}$$

Toy Model Inputs

Christine McLean

Particle List Inputs

Variable $log(p_T)$ $log(p_T/p_{T_{jet}})$ log(E) $|\eta|$ $\Delta \phi(jet)$ $\Delta \eta(jet)$ $\Delta R(jet)$ $\Delta R(subjet1)$ $\Delta R(subjet2)$ Charge qisMuon isElectron isPhoton isChargedHadronisNeutralHadron d_{xy} d_z

Pythia Model Preprocessing

Cut on softdrop mass: keep jets with m_{SD} 50-150 GeV Numerical rescaling

- 1. Rebin outliers to mean + 3(std) and mean 3(std)
- 2. Input distributions are then rescaled from 0 to 1:

1.0

29

B Pythia Model 1D LRP Plots

Profiles don't show clear decision boundary - need higher dimensional plots

July 8th, 2021 Christine McLean