

Contribution ID: 26

Type: **not specified**

Learning Symmetries and Conserved Quantities of Physical Systems

Thursday 8 July 2021 09:00 (20 minutes)

This talk is about how we can use ML to identify symmetries (conserved quantities) of physical systems. I report on three different strategies to find symmetries:

- 1) By examining the embedding a (deep) neural network adapts on a simple supervised task (2003.13679).
- 2) By imposing a modification to Hamiltonian Neural Networks such that a coordinate transformation ensures the emergence of conserved quantities (symmetry control neural networks, 2104.14444).
- 3) By searching for a Lax pair/connection to identify whether a system is integrable (2103.07475), i.e. it has as many conserved quantities as degrees of freedom.

I comment on how strategies 1) and 3) enable us to search for new mathematical structures and how 2) can be used to accelerate simulations.

Affiliation

LMU Munich

Academic Rank

Author: Krippendorf, Sven

Presenter: Krippendorf, Sven

Session Classification: Exploring the Latent Structure of Data