Detecting hidden Patterns inside jets with probabilistic models

Darius A. Faroughy

ML4Jets, Heidelberg, July 8th 2021

Overview

• Build step by step a probabilistic model for collider events

Application: extract BSM from dijets using the lund Jet plane.

1904.04200 - Jernej F. Kamenik

Based on: 2005.12319 - Barry Dillon

2012.08579 - Manuel Swezc

Collider events as point patterns

• Collider event: set of observations, or measurements. $e = \{o_1, \dots, o_n\}$

 $o_i \in \mathcal{O}$ ------ space of observables

random distribution of points

$$e(o) = \sum_{i=1}^{n} \delta^{(k)}(o - o_i)$$

ullet We could model events with an underlying stochastic point process in ${\mathcal O}$

e.g. Non-homogenous Poisson process

$$N(\mathcal{R}) \equiv \#\{o \in \mathcal{R} \subset \mathcal{O}\} \iff N(\mathcal{R}) \sim \operatorname{Poisson}(\lambda_{\mathcal{R}}), \quad \lambda_{\mathcal{R}} = \int_{\mathcal{R}} \prod^{k} d\mathcal{O} \ \mu(\mathcal{O}_{1}, \dots, \mathcal{O}_{k})$$

• Point patterns can be sparse and give rise to irregular patterns.

example: primary Lund jet plane Dreyer et al (2018)

Probabilistic models for events

Modelling events with a stochastic point porcesses seems cool, but too complicated...

$$\mathcal{P}(e) = \mathcal{P}(o_1, o_2, o_3, \cdots)$$
 How can we model this joint probability in a simple way?

felixible and tractable

Goal: build a probabilistic model for event classification (not event generators)

Our "model-building" assumptions

- I. Exchangeability of observations.
- II. Discretization of the observable space.
- III. Multiple *latent* 'classes' can contribute to each event.

I. Exchangeability

Exchangeability of event observations (i.e. Permutation symmetry)

$$\mathcal{P}(o_1,o_2,o_3,\cdots)=\mathcal{P}(o_{\pi(1)},o_{\pi(2)},o_{\pi(3)},\cdots)$$
 $\pi\in\mathcal{S}$ permutation group

De Finnetti's representation theorem (1931):

A sequence of observations is exchangeable if and only if there exists a latent variable ω such that:

$$\mathcal{P}(o_1,o_2,\ldots) = \int_{\Omega} \mathrm{d}\omega \, P(\omega) \prod_{i=1}^n p(o_i|\omega)$$
 Latent space Prior Likelihood

- Obervations are considered conditionally independent given a latent variable $\omega \in \Omega$
- Exchangeable not to be confused with independent and identically distributed (iid) !!
- We will need extra model-building assumptions to f k p, P, omega

II. Discretization

• What to take for $p(o|\omega)$?

$$\mathcal{P}(o_1, o_2, \ldots) = \int_{\Omega} d\omega \, P(\omega) \prod_{i=1}^{n} p(o_i | \omega)$$

Multinomial distributions for binned data:

$$o \sim \mathrm{Multinomial}(eta) \qquad \left\{ egin{array}{l} \displaystyle \sum_{m=1}^{M} eta_m = 1 \\ \\ \displaystyle eta = (eta_1, \ldots, eta_M) \end{array}
ight. \qquad \left\{ egin{array}{l} \displaystyle \sum_{m=1}^{M} eta_m = 1 \\ \\ \displaystyle 0 \leq eta_m \leq 1 \end{array}
ight.$$

$$\begin{cases} \sum_{m=1}^{M} \beta_m = 1 \\ 0 \le \beta_m \le 1 \end{cases}$$

M-dimensional Simplex for $\,eta=(eta_1,\ldots,eta_M)\,$

• We introduce a prior for $\beta = (\beta_1, \dots, \beta_M)$

Dirichlet distribution

$$D(eta|\eta) = rac{\Gamma(\eta_1 + \dots + \eta_M)}{\Gamma(\eta_1) \dots \Gamma(\eta_M)} \prod_{m=1}^M eta_m^{\eta_m - 1}$$
 $n = (\eta_1, \dots, \eta_M)$ shape parameter

III. Latent event classes

What to take for ther latent variable?

$$\mathcal{P}(o_1, o_2, \ldots) = \int_{\Omega} \omega P(\omega) \prod_{i=1}^n p(o_i | \omega, \beta)$$

• Event observations are generated from **multiple** latent Multinomial distributions over \mathcal{O}

$$p(o|\beta_t)$$
 $t=1,\ldots,T$

Mixture of multinomials:

$$p(o|\omega, eta) = \sum_{t=1}^{T} p(t|\omega) \, p(o|eta_t)$$
 *Terminology from Natural Language Processing Theme' mixing parameter $\omega = (\omega_1, \dots, \omega_t)$ $p(t|\omega) = \omega_t$ $0 < \omega_t < 1, \quad \sum \omega_t = 1$

Latent space T-dimensional simplex (space of theme mixings)

The prior P is a Dirichlet distribution

$$D(\omega|\alpha)$$
 $\alpha = (\alpha_1, \cdots, \alpha_T)$

$$\mathcal{P}(o_1, o_2, \ldots) = \int_{\Omega} d\omega \underbrace{P(\omega)}_{i=1}^n p(o_i | \omega, \beta)$$

 $0 \le \omega_t \le 1, \quad \sum \omega_t = 1$

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

• Generative process (T = 3):

 $\mathcal{D}(\omega|\alpha_0,\alpha_1,\alpha_2)$

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

$$\mathcal{P}(e|\alpha) = \int_{\Omega_T} d\omega \, D(\omega|\alpha) \prod_{i=1}^n \left(\sum_{t=1}^T p(t|\omega) \, p(o_i|\beta_t) \right)$$

$$e = \{o_1, \cdots, o_n\}$$

Latent Dirichlet Allocation (LDA)

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

• Generative process (T = 3):

I.

LDA is a mixed-membership model

LDA classifier

Bayesian inference:

$$p(\omega, t, \beta | e, \alpha, \eta) = \frac{p(\omega, t, \beta, e | \alpha, \eta)}{p(e | \alpha, \eta)} - \sum_{t} \int d\omega d\beta \, p(\omega, t, \beta, e | \alpha, \eta) \qquad \text{``evidence'' intractable!}$$

• Variational inference: inference problem \longrightarrow optimization problem.

Blei, et al. Journal of the American Statistical Association 112 (Feb. 2017) 859-877

For most applications we wish to classify events into two categories (e.g. signal & background)

We focus on Two-theme LDA models T=2

LDA classifer: likelihood ratio of the 2 themes.

$$L(e|lpha):=\prod_{o\in e}rac{p(o\,|\hateta_2)}{p(o\,|\hateta_1)} \qquad \qquad \left\{egin{array}{cccc} L(e|lpha)>c&\Rightarrow&e\in\mathcal{C}_1\ L(e|lpha)\leq c&\Rightarrow&e\in\mathcal{C}_2 \end{array}
ight.$$
 We actually have an infinite

We actually have an infinite landscape of LDA classifiers...

Jet clustering history

• Jet clustering history is sensitive to the underlying physics. binary tree: proxy for the radiation pattern during jet formation.

• "De Finnetti" representation for jets:

Jet observables & data samples

Train LDA on full events with Lund observables:

$$\mathcal{O}_{\mathrm{Lund}} = \left\{\ell, \log(k_t), \log\left(\frac{1}{\Delta}\right)\right\} \qquad \text{Primary Lund plane} \\ \text{Dreyer et al (2018)} \qquad \cdots \qquad \cdots$$

Primary Lund-plane regions non-pert. (small k_t) $ln(R/\Delta)$

Label indicating to which jet the measurement belongs too, mass-ordered jets.

<u>Dijet data</u>: unlabeled mixture of QCD (b) + BSM (s)

$$s/b \ll 1$$

$$pp \to W' \to \Phi W^{\pm}$$

$$\Phi \to W^{\pm}W^{\mp}$$

$$m_{W'} = 3 \text{ TeV}$$

$$m_{\Phi} = 400 \text{ GeV}$$

Training performed with Gensim package (python)

Jet observables & data samples

Train LDA on full events with Lund observables:

$$\mathcal{O}_{\mathrm{Lund}} = \left\{ \ell, \log(k_t), \log\left(\frac{1}{\Delta}\right) \right\} \qquad \text{Primary Lund plane} \qquad \cdots \\ \text{Dreyer et al (2018)} \qquad \cdots \qquad \cdots$$

Primary Lund-plane regions non-pert. (small k_t) $ln(R/\Delta)$

Label indicating to which jet the measurement belongs too, mass-ordered jets.

<u>Dijet data</u>: unlabeled mixture of QCD (b) + BSM (s)

$$s/b \ll 1$$

$$pp \to W' \to \Phi W^{\pm}$$

$$\Phi \to W^{\pm}W^{\mp}$$

$$m_{W'} = 3 \,\text{TeV}$$

 $m_{\Phi} = 400 \,\mathrm{GeV}$

Training performed with Gensim package (python)

Extracting rare signals with LDA

• Which Dirichlet prior for the theme mixture? $\omega \sim D(\omega | \alpha_1, \alpha_2)$

Reparametrization:

$$(\alpha_1, \alpha_2) \to (\rho, \Sigma)$$

$$\begin{cases} \Sigma = \alpha_1 + \alpha_2 \\ \rho = \frac{\alpha_2}{\alpha_1} \end{cases}$$

Controls the shape asymmetry

Prior with asymmetric shape

We want to discover rare signal in a data sample dominated by QCD

 $b \gg s$

 $ho \sim 0.1$ usually works...

Uncovering BSM physics from the Lund plane

$$pp \to W' \to \Phi W^{\pm}, \ \Phi \to W^{\pm}W^{\mp}$$

~ 100k events
$$s/b = 0.01 \qquad \mathcal{O}_{\mathrm{Lund}} = \left\{\ell, \log(k_t), \log\left(\frac{R}{\Delta R}\right)\right\} \qquad (\rho, \Sigma) = (0.1, 1)$$

LDA discovers the hard/colinear splittings of the massive resonance decays in the Primary lund plane.

What if we train on much less events?

$$\left\{ \begin{array}{ll} \text{10k QCD events} \\ \text{100 signal events} \end{array} \right. \\ s/b = 0.01 \\ \mathcal{O}_{\text{Lund}} = \left\{ \log(k_t), \log\left(\frac{R}{\Delta R}\right) \right\} \\ \left. (\rho, \Sigma) = (0.0009, 5.2) \right. \\ \end{array}$$

$$\left\{ \begin{array}{ll} \textbf{1600 QCD events} \\ \textbf{40 signal events} \end{array} \right. \\ s/b = 0.025 \\ \mathcal{O}_{\mathrm{Lund}} = \left\{ \log(k_t), \log\left(\frac{R}{\Delta R}\right) \right\} \\ \left. (\rho, \Sigma) = (0.09, 4.0) \right\}$$

LDA works well with small data samples!

Perplexity & the landscape of LDA classifiers

- We need a criteria for selecting from all possible LDA models the one with the "best" performance.
 - i.e. a statistical goodness-of-f t test for the model.
- Perplexity measures how well the probabilistic model f to the data sample. Good models have a lower perplexity score
- Trained ~1000 LDA models in the (ρ, Σ) plane:

Summary

- We showed that simple generative probabilistic models can be used to describe collider events represented as point patterns.
- Under very broad assumptions we arrived to the Latent Dirichlet Allocation (LDA) model.
- We demonstrated that LDA trained on the Lund plane can be used to uncover heavy resonances in dijet samples in a fully unsupervised way.
- LDA is just one of many possible probabilistic model...
- It can used as a building block for more complex models which could be useful for jet physics.
- Much more to explore! e.g. Bump hunt using LDA trained on the Lund jet planes or other observables.

Developed by:

Ezequiel Alvarez (ICAS) Daniel de Florian (ICAS) Federico Lamagna (CAB CNEA) Cesar Miquel (Easytech) Manuel Szewc (ICAS)

Powered by:

icas.unsam.edu.ar easytechgreen.com unsam.edu.ar

iarxiv.org

iarxiv.org

Uses LDA to sort daily arxiv papers by learning your topic preferences

Thank You!

Back-up material

Topic Models for texts

LDA conceived for Natural Language Processing

Blei, Ng, Jordan, Journal of Machine Learning Research, 3 (2003) 993-1022.

over 30K citations!

Fully Unsupervised ML

- LDA uncovers the hidden topics in a collection of documents
- Documents: unstructured collection of words

Bag-of-words (Bow)

Topics: distributions over vocabulary

• Text / Collider Physics correspondance:

corpus ------ event samples document ----- event vocabulary ----- space of observables word ----- bin topic ----- histogram

Learning the latent variables

The posterior for an event:

$$p(\omega,t,\beta|e,\alpha,\eta) = \frac{p(\omega,t,\beta,e|\alpha,\eta)}{p(e|\alpha,\eta)} - \sum_{t} \int \mathrm{d}\omega \mathrm{d}\beta \, p(\omega,t,\beta,e|\alpha,\eta) \quad \text{``evidence''} \quad \text{Intractable integral!}$$

• Variational inference: inference problem ———— optimization problem

Propose a simple family of distributions \mathcal{Q}

$$q^* = \operatorname*{argmin}_{q \, \in \, \mathcal{Q}} d_{\mathrm{KL}}[q,p]$$
 posterior

Kullback-Liebler divergence

$$d_{\mathrm{KL}}[q,p] = \langle \log q \rangle - \langle \log p \rangle + \underbrace{\log p(e)}_{\text{Log-evidence.....}}$$
 still intractable

Instead we maximize evidence lower-bound (ELBO):

$$q^* = \operatorname*{argmax} \mathcal{L}[q]$$
 $\mathcal{L}[q] := \langle \log p \rangle - \langle \log q \rangle$ $\log p(e) = d_{\mathrm{KL}}[q, p] + \mathcal{L}[q] \implies \log p(e) \geq \mathcal{L}[q]$

Choose \mathcal{Q} f exible enough to approximate posterior... but simple enough for efficient optimization.

"Mean-f eld" variational family:

$$q(\theta|\mu) = \prod_{i} q(\theta_i|\mu_i)$$

LDA variational inference:

$$q(\omega, t, \beta | \lambda, \phi, \gamma) = q(\omega | \gamma) q(t | \phi) q(\beta | \lambda)$$

LDA mean-f eld approximation

$$q(\omega) = \text{Dirichlet}(\omega|\gamma)$$

 $q(t) = \text{Multinomial}(\phi)$
 $q(\beta) = \text{Dirichlet}(\beta|\lambda)$

$$(\lambda^*, \phi^*, \gamma^*) = \underset{(\lambda, \phi, \gamma)}{\operatorname{argmax}} \mathcal{L}[q(\omega, t, \beta) | \lambda, \phi, \gamma)]$$

Co-ocurrences

- What does LDA learn?
- LDA learns by identifying recurring measurement patterns

Captures the statistical dependencies between event measurements in the event ensemble

Finds Co-ocurrences between event measurement throughout the event sample.

(LDA clusters in the same themes measurments that tend to co-occur together)

Asymmetric Dirichlet prior

$$(\rho,\Sigma)=(0.1,1)$$

Symmetric Dirichlet prior

$$(\rho, \Sigma) = (0.75, 1.8)$$

Point pattern co-ocurrences in the Lund plane

Darius A. Faroughy / Zurich U.

Uncovering unkown BSM

What BSM we plugged in? W' + scalar

$$pp \to W' \to \Phi W^{\pm}, \ \Phi \to W^{\pm}W^{\mp}$$

$$m_{W'} = 3 \,\text{TeV}, \quad m_{\Phi} = 400 \,\text{GeV}$$

Perplexity

For an event sample $\mathcal{D} = \{e_1, \dots, e_N\}$

$$\text{perplexity}(\mathcal{D}) := 2^{-b} \qquad b = \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \log p(e_j) \approx \frac{1}{n_{\text{tot}}} \sum_{j=1}^{N} \mathcal{L}(e_j)$$

$$\text{Total number of measurements}$$

• Perplexity is the measure of how well a generative model f ts the data sample.

Good models have a lower perplexity score, i.e. a greater probability it generated the observed data.

Back to 1995: 're-discovering' Top-quarks

• Train two-theme LDA on mixed (unlabelled) QCD + tops sample ~ 50k events

LDA classif er performance:

Moderate performance for unsupervised LDA classifiers

Small signal:
$$s/b=0.05$$

$$\mathcal{O}_{\mathrm{Mass}}=\left\{\ell,m_{j_0},\frac{m_{j_1}}{m_{j_0}}\right\} \hspace{0.5cm} (\rho,\Sigma)=(0.1,1.5)$$

