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... we want to learn the underlying dynamical system



Two complementary approaches

The domain expert creates a system of differential equations

v interpretable

v/ can incorporate prior domain knowledge
v few parameters

v/ probably data efficient

X not very flexible

X what to do if only partial knowledge is available?

WHITE Box ODE
dht — T(ht, t)dt




Two complementary approaches

The domain expert creates a system of differential equations

v interpretable

v/ can incorporate prior domain knowledge

v few parameters

v/ probably data efficient

X not very flexible

X what to do if only partial knowledge is available?

WHITE Box ODE
dht — T(ht, t)dt

The data scientist relies on deep learning and creates a neural ODE

v very flexible

v can adapt itself to complex relationship
X lots of parameters

X data hungry

BrLAack Box ODE
dh; = fy(hy, t)dt




Can we combine the two?

BrLAack Box ODE WHITE BoxX ODE
dht = f@(ht, t)dt dht = T(ht, t)dt
HYBRID ODE

dh; = (fo(hy,t) +~ or(hy,t))dt

- Get the best of both worlds with in a hybrid model (with ~ € {0,1}?)
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Can we combine the two?

BrLAck Box ODE WHITE BoxX ODE
dh; = fyo(hy, t)dt dh; = r(hy, t)dt
HYBRID ODE

il = (f()(ht,t) +~o0 r(ht,t))dt

- Get the best of both worlds with in a hybrid model (with ~ € {0,1}?)

- Can we go one step further?

- Model parameter (epistemic) uncertainty by switching to a BNN

- Model (aleatoric) uncertainty by switching to an SDE



The complete pipeline

BrLAack Box ODE WHITE Box ODE
dh; = fo(hy, t)dt diag— vih v d!

HYBRID ODE
dht - (f@(hty t) = Y © 'I"(ht, t))dt

v

HYBRID SDE
dht = (fg(ht, t) Sl SA© T(ht, t))dt =t G(ht, t)th

v flexibility & adaptability v domain knowledge v uncertainty



The complete pipeline

BrLAack Box ODE WHITE Box ODE
dh; = fo(hy, t)dt diag— vih v d!

HYBRID ODE
dht - (f@(hta t) = Y © 'I"(ht, t))dt

v

HYBRID SDE
dhy = (fo(hy, t) + v or(hy,t))dt + G(hy, t)dW,

v flexibility & adaptability v domain knowledge v uncertainty

Great, but... How do | actually learn such a thing?



Step 1: Euler-Murayama discretization (see e.g. Sérkka and Solin, 2019)

Problem 1: How to deal with the SDE?

HYBRID SDE
dht — (fg(ht, t) - %Y © T(ht, t))dt == G(ht, t)th

- W, denotes a Wiener process, G gives the diffusion dynamics

- Discretization of the SDE into K steps gives us

htk-l—l = htk —|— (f@(htkv tk) —|— ’Y ©) T(htk, tk))Atk —|— G(htk,tk)AWk
AW} ~ N(O, Atk]lp) Aty ==t — tg



Step 1.5: Design a generative pipeline

- Our generative pipeline is then given as

0 ~ py(0)
hy ~ p(hy)
hk+1|h]€,9 ~ N(hk+1|hk + d(hk, tk)Atk, Ek), k=0,..., K—1

Where we have observed N trajectories D ={Y4,..., Yy} with Y, ={y?,...,y%}

- Classical approach: Infer a posterior over local and global parameters

p(97H1, s 7HN|D)



Step 2: Empirical Bayes / Type | Maximum Likelihood

- Problem 2: Infer a posterior over local and global parameters
p(0,Hy,... , Hy|D)
- How?
- MCMC? Becomes very quickly too expensive computationally

- Variational Inference? Becomes too restrictive due to strong independence assumptions

- Instead, Type Il Maximum Likelihood

~

¢ = argdr)nax/p(D\H)p(H\Q)p(b(Q) dH do

S

1 S
~ arg;nax log (§ ;p(mH ))



Step 3: PAC-based regularization

- Problem 3: We now have a tractable approach, but we lost a lot of regularization
- A very quick primer on PAC-Bayes (see e.g. McAllester, 1999,2003)

- Avisk of a hypothesis h given aloss lis ~ R(h) = E, [[(z, h(x))]

- The empirical counterpart is given as Rp(h) = ﬁ Z I(x, h(z))
z€D

- Given a distribution over hypothesis Q and a prior distribution P

]P(VQ . Eno [R(h)] < Epo [Ro(h)] +C(P,Q, s, N)) >1-94



Step 3: PAC-based regularization

We place distributions over the hybrid and a prior process
Qo1 (hosT,0) = Puyn(ho—7[0)pe(0)
Posr (hO—>T7 9) — ppri(hO%T)ppri(e)

and define the risk as

1 K
R(H) £ Ey, e [1 T3 I P(ykhk)]
k=1



Step 3: PAC-based regularization

We place distributions over the hybrid and a prior process

Qo—1(hos1,0) = Puyn(ho7|0)pe(6)
Posr (hO—>T7 9) — ppri(hO%T)ppri(e)
and can then show (Theorem 1) that

WithP>1-8  Egngy.r [RUE)] < Efngor [Ro(H)] + C5(Qoor, Pos)

Ultimate objective is then

N § K

O = arg max = 7 > log (p(yrIhy ) + \/KL Qo | PO;;\}) log v ¥/d)
n=l s=1 k=1

\ J/
. J/ ~~

approx marglnal likelihood regularizer




Theoretical Summary

Step 0: Design a hybrid SDE model that allows for knowledge and ignorance

Step 1: Turn into a probabilistic model via discretization

Step 2: Empirical Bayes/Type Il ML to get a principled, tractable objective (v1.0)

Step 3: PAC-Bayes to get an improved principled objective (v2.0)



Results: Lorenz Attractor as an SDE

Prior Knowledge Model Test MSE
: (i) 29.20+0.19
The underlying SDE None ) 29.05%00
=00, CmNOY G
dxt = C(yr — x¢) At + dW, R
) = [0,1’0]’ e N(28,1) (%11) 87+0.46
dyt — (xt(K _ Zt) _ yt) dt + th, (iv)  15.06+0.35
(iii) 27.82+0.26
dz¢ = (xeyr — pzt) dt + dW, 7= [0, @ eR6E1 (iv)  28.37+021
v=[L1,1], v) 1640231

(C,x,p)" ~N((10,28,2.67)7,13)

(i) Empirical Bayes (EB) based without prior knowledge

(ii) EB with PAC regularization

(iii) EB with prior knowledge

(iv) EB with prior knowledge and PAC regularization

(v) A model with full prior knowledge over all three equations



Results: Lorenz Attractor as an SDE
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Results: Lorenz Attractor as an SDE
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Results: Lorenz Attractor as an SDE
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Results: Lorenz Attractor as an SDE
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Results: Lorenz Attractor as an SDE
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Results: CMU Motion Capture Data

Method Test MSE Test NLL
DTSBN-S (Gan et al., 2015) 34.86+0.02 Not Applicable
npODE (Heinonen et al., 2018) 22.96 Not Applicable
Neural-ODE (Chen et al., 2018a) 22.49+0.88 Not Applicable
ODE?VAE (Yildiz et al., 2019) 10.06+1.40  Not Reported
ODE?VAE-KL (Yildiz et al., 2019) 8.09+195  Not Reported
D-BNN (SGLD) (Look and Kandemir, 2019) 13.89+256  747.92+58.49
D-BNN (VI) (Hegde et al., 2019) 9.05+2.05 452.47+102.59
(i) E-Bayes 8.68+1.56 433.76+77.78
(ii) E-PAC-Bayes 9.17+1.20 489.82+67.06
(iii) E-Bayes-Hybrid 9.25+1.99 462.82+99.61
(iv) E-PAC-Bayes-Hybrid 7.84+1.41 415.38+80.37




Thank you for listening!

Please see arxiv.org/abs/2006.09914 for further details
Feel free to contact me at manuel.haussmann@iwr.uni-heidelberg.de with further questions
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