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Normalizing flows & INNs

q(x) (learned)

p(z) (fixed)

z = f(x)

x = f−1(z)

q(x) = p
(
z=f(x)

)
|detJ |q(x) = p

(
z=f(x)

)
|detJ |

INN
:=

∂f
∂x (free with INNs)

• Max likelihood training: maxf log q(xtrain)

• Cheap sampling: xsamp = f−1(zsamp)

• Various INN architectures (Dinh et al. (2017); Behrmann et al. (2019); Grathwohl et al. (2018),...)
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Inverse Problems

System parameter x̂ y observableknown ‘forward process’

Uncertainty q(x|y)
• Ambiguities

• Noisy process

• Finite cpacity

y observableinverse problem

See also: Kruse et al. (2021b); Ardizzone et al. (2019a); Kruse et al. (2021a)
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Conditional INNs (cINNs, Ardizzone et al., 2019b)

INN
z = f(x)

x = f−1(z)

x z

cINN
z = f(x; y)

x = f−1(z; y)

x z

y

Standard: q(x) = p
(
z=f(x)

)
|detJ |

Conditional: q(x | y) = p
(
z=f(x; y)

)
|detJ |
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Inverse problem – Stellar evolution (Ksoll et al., 2020)

Estimate physical properties of stars x from observed spectral lines y

(not shown)

Luminosity L Mass M Surface gravity g

q(L|y)

True answer
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Stellar evolution (Ksoll et al., 2020)

Full uncertainty distributions can point to new physics:
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Inverse problem – Wind turbine design
(Noever-Castelos et al., 2021)

x: full physical model

y: diameters, weight
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Inverse problem – Epidemiology (Radev et al., 2020)

x (24 params)

y (time series)
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Inverse problem – Epidemiology (Radev et al., 2020)

Simulation with predicted params matches obervations:
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Experimental Design (Adler et al., 2019a)

(Multispectral) camera during surgery

Determine oxygen, blood flow, ...
from spectrum in each pixel

Simulate four
camera models:

Percentage of
ambiguous cases: 0.3% 0.5% 9.3% 3.6%
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Diverse Generation

Sampling from a distribution p(x)

(or p(x | y))

is too hard if

• x very high dimensional

• p(x) not explicitly known

Use NF for q(x) ≈ p(x)
(or q(x | y) ≈ p(x | y))
Use NF for q(x) ≈ p(x)

Hypothesis generation

Proposals

MCMC prior

...
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Diverse Generation with cINNs (Ardizzone et al., 2021)

Condition y Sampled x ∼ q(x|y) Original x̂
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Generating plausible molecules (Satorras et al., 2021)

• Dataset of known moleclues → generate more

• E(n) -equivariant INN
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Adenoviruses as localized vectors (in progress)

• Adenoviruses for vaccination,
cancer treatment, gene therapy, ...

• Fibers (‘antennas’) to target
certain organs

• 4010 possible fibers

→ Generate candidates
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Anomaly Detection with Normalizing Flows

Detect anomalies without knowing what they are?

• Train NF q(x) on in-distribution data
• q(x∗) very low =⇒ x∗ from out-of-distribution
• Hypothesis testing framework

p -value 0.1

Reading: Nalisnick et al. (2019); Choi et al. (2018); Serrà et al. (2019); Mackowiak et al. (2021)
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Anomaly detection in multispectral medical imaging
(Adler et al., 2019b)
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performance assessment of optical imaging modalities with invertible neural networks. International journal of computer assisted radiology and
surgery, 14(6):997–1007, 2019a.

Adler, T. J., Ayala, L., Ardizzone, L., Kenngott, H. G., Vemuri, A., Müller-Stich, B. P., Rother, C., Köthe, U., and Maier-Hein, L. Out of distribution
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