ML4Jets 2021

Super-Resolution for QCD and Top Jets

Pierre Baldi¹, Lukas Blecher², Anja Butter², Julian Collado¹, Jessica Howard³, Fabian Keilbach², Tilman Plehn², Gregor Kasieczka⁴, and Daniel Whiteson³

July 7, 2021

Lukas Blecher

Department of Computer Science, University of California, Irvine, US
Institut für Theoretische Physik, Universität Heidelberg, Germany
Department of Physics and Astronomy, University of California, Irvine, US
Institut für Experimentalphysik, Universität Hamburg, Germany

Preprint: https://arxiv.org/abs/2012.11944

Lukas Blecher

- Dataset
- Model
- Evaluation
- Conclusion
- References
- Appendix

Definition: Super Resolution

In single image super resolution (SISR) the goal is to predict a sensible high resolution (HR), super resolved (SR) version of a given low resolution (LR) image

- Use established SR method as starting point: ESRGAN [1]
- Generative Adversarial Network [2] setup

Lukas Blecher

Dataset Model Evaluation Conclusion References

(a) High Resolution

(b) Low Resolution

(c) Bicubic Upsampling

(d) Super Resolution

Figure: Super resolution on the STL-10 [3] testset using the ESRGAN

Lukas Blecher

Dataset Model Evaluation Conclusion References

- (a) High Resolution
- (b) Low Resolution
- (c) Bicubic Upsampling
- (d) Super Resolution

Question

Can an upsampled jet image include more information than the original, low-resolution image?

QCD and To Jets

Lukas Blecher

Dataset

- Model
- Evaluation
- Conclusion
- References
- **Appendi**x

- Use Pythia [4] to generate $t\bar{t}$ and QCD dijet events
- Center of mass energy of $\sqrt{s} = 14 \text{ TeV}$
- Run DELPHES [5] with standard ATLAS card \rightarrow HR version (160 \times 160)

QCD and To Jets

Lukas Blecher

Dataset

- Model
- Evaluation
- Conclusion
- References
- Appendix

- Use Pythia [4] to generate $t\bar{t}$ and QCD dijet events
- Center of mass energy of $\sqrt{s}=14\,{\rm TeV}$
- Run DELPHES [5] with standard ATLAS card \rightarrow HR version (160 \times 160)
- Perform downsampling step (sum pooling f = 8) \rightarrow LR version (20 \times 20)
- Run anti-kt jet algorithm using FASTJET [6] on HR & LR
- Filter: Jet $p_T \in [550, 650]$ GeV, $|\eta|_{\rm jet} < 2$ and $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.1$

We end up with paired dataset of LR & HR images of the same event.

Lukas Blecher

Dataset

Model

Evaluation

Conclusion

Reference

Appendi×

Sparse images: 99.80% empty Individual constituents can have transverse momenta of up to $p_T=500~{\rm GeV},$ but over 85% have $p_T<20~{\rm GeV}$ \Rightarrow Sharp and wide distribution, hard to learn for network Solution: Raise image to a power $p\in(0,1)$ in a pixel-wise fashion

Figure: Energy distribution behaviour when raising it to different powers \boldsymbol{p}

Training Process

Lukas Blecher

Dataset

Model

Evaluation

Conclusion

Reference

Appendix

Figure: Training iteration

$$\begin{split} L_G = \sum_{s \in \{\text{std, pow}\}} \lambda_s \big(\lambda_{\text{HR}} \, L_{\text{HR}} + \lambda_{\text{LR}} \, L_{\text{LR}} + \lambda_{\text{adv}} \, L_{\text{adv}} + \\ \lambda_{\text{patch}} \, L_{\text{patch}} \big) \end{split}$$

Resolution fo QCD and To Jets

Lukas Blecher

Dataset

Model

Evaluation

Conclusion

Reference

Appendix

Patch loss helps to balance the spread of constituents

Figure: Patch rearrangement. f is the upscaling factor

Sum over created dimension. Compare using **Mean Squared Error**

$$L_{\text{patch}} = L_2 \left(\text{patch}(\text{SR}), \, \text{patch}(\text{HR}) \right)$$
 (1)

Jet observables

Super-Resolution for QCD and Top Jets

Lukas Blecher

Dataset

Model

Evaluation

Conclusion

Reference

Append

Compare $p_{\rm T}$ distribution for the $n^{\rm th}$ hardest jet and set of high-level jet observables [7–10]

$$\begin{split} m_{\rm jet} &= \left(\sum_i p_i^{\mu}\right)^2 \\ C_{0.2} &= \frac{\sum_{i,j} p_{{\rm T},i} p_{{\rm T},j} (\Delta R_{i,j})^{0.2}}{(\sum_i p_{{\rm T},i})^2} \\ \tau_N &= \frac{\sum_k p_{{\rm T},k} \min(\Delta R_{1,k}, \dots, \Delta R_{N,k})}{\sum_k p_{{\rm T},k} R_0} \end{split}$$

Lukas Blecher

- Dataset Model
- Conclusio
- Reference
- Appendix

Performance for QCD Jets – Low level

Lukas Blecher

Dataset

- Model
- Evaluation
- Conclusion
- Reference
- Appendix

Performance for QCD Jets – High level

Lukas Blecher

SR

Dataset Model Evaluation Conclusion References

Performance for Top Jets – Low level

4000

- 3000

- 2000

1000

0

-4000

- 3000

- 2000

- 1000

6000 t

0

Lukas Blecher

Dataset

- Model
- Evaluation
- Conclusion
- Reference
- Appendix

Performance for Top Jets – High level

QCD and Top Jets

Lukas Blecher

Dataset

Model

Evaluation

Conclusion

References

Appendix

Until now: Distributions over entire test set Number of samples drown out individual effect

Question

Does up-sampling add information to an individual jet?

Goal is not to reconstruct the true HR jet. SR jet needs to be $\ensuremath{\textit{consistent}}$ with LR jet.

For given observable look at deviations from true value on event by event basis

$\mathrm{HR}-\mathrm{LR}$	and	$\mathrm{HR} - \mathrm{SR}$
HR		HR

Also look at relation of deviations

 $\frac{|\mathrm{HR}-\mathrm{SR}|}{|\mathrm{HR}-\mathrm{LR}|} = \begin{cases} <1, & \mathsf{SR} \text{ describes HR better than LR} \\ >1, & \mathsf{LR} \text{ describes HR better than SR} \end{cases}$

Event-Event

Evaluation

Conclusion

Reference

Appendix

Figure: Top jets: Relative ratio for jet observables

Event-Event

Lukas Blecher

- Dataset
- Model
- Evaluation
- Conclusion
- Reference
- Appendix

Figure: Top jets: Correlation of ratios for jet observables

Jets Lukas Blecher

- Dataset
- Model
- Evaluation
- Conclusion
- References
- Appendix

- Introduce new application of deep learning to jet physics
- Able to generate sensible 8-fold super-resolved jet images
- Super-resolution networks can provide additional information
- Can be used to enhance jet measurements in regions with poor calorimeter resolution

References I

Lukas Blecher

- Dataset
- Model
- Evaluation
- Conclusio
- References
- Appendix

- ¹ X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao, and X. Tang, "ESRGAN: enhanced super-resolution generative adversarial networks", CoRR abs/1809.00219 (2018).
 - ² I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, *Generative adversarial networks*, 2014.
- ³ A. Y. N. Adam Coates Honglak Lee, "An analysis of single layer networks in unsupervised feature learning", (2011).
- ⁴ T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, "An Introduction to PYTHIA 8.2", Comput. Phys. Commun. 191, 159–177 (2015).
- ⁵ J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi, "Delphes 3: a modular framework for fast simulation of a generic collider experiment", Journal of High Energy Physics 2014, 10.1007/jhep02(2014)057 (2014).
- ⁶ M. Cacciari, G. P. Salam, and G. Soyez, "FastJet User Manual", Eur. Phys. J. C 72, 1896 (2012).
- ⁷ J. Gallicchio, J. Huth, M. Kagan, M. D. Schwartz, K. Black, and B. Tweedie, "Multivariate discrimination and the Higgs + W/Z search", JHEP 04, 069 (2011).
- ⁸ A. J. Larkoski, G. P. Salam, and J. Thaler, "Energy Correlation Functions for Jet Substructure", JHEP 06, 108 (2013).
- ⁹ J. Thaler and K. Van Tilburg, "Identifying Boosted Objects with N-subjettiness", JHEP 03, 015 (2011).
- ¹⁰ G. Kasieczka, N. Kiefer, T. Plehn, and J. M. Thompson, "Quark-Gluon Tagging: Machine Learning vs Detector", SciPost Phys. 6, 069 (2019).
- ¹¹ C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, "Photo-realistic single image super-resolution using a generative adversarial network", CoRR abs/1609.04802 (2016).

Lukas Blecher

Dataset

Mode

Evaluation

Conclusion

Reference

Appendix

Figure: Generator structure [1, 11]

Discriminator

Super-Resolution fo QCD and To Jets

Lukas Blecher

Dataset

- Model
- Evaluation
- Conclusion
- Reference
- Appendix

Figure: Markovian discriminator

Resolution for

Figure: Training iteration – multi-power loss

Figure: Training iteration – standard loss

ation

Deferences

Resolution for QCD and Top Jets Lukas Blecher

Appendix

Lukas Blecher

Figure: Energy distributions with only the standard loss

Figure: Training iteration – power loss

Resolution for

Dataset

Model

Evaluation

Conclusion

Reference

Appendix

Multi-Power Learning

Lukas Blecher

- Dataset
- Model
- Evaluatio
- Conclusion
- Reference
- Appendix

Figure: Energy distributions with only the standard loss

Figure: Energy distributions with only the power loss