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The effects of soft gluon brehmsstrahlung on the k, distributions of x pairs
produced in hadron-hadron collisions are studied using the Block-Nordsiek method.
At moderate energies we obtain a good fit to present experimental data by adjusting
the values of two phenomenological parameters. At quite large energies the predictions
are independent of specific values assigned to the parameters and the whole p, dis-
tribution, including p, =0, turns out to be computable.
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How low in gT?

Momentum-space resummation for transverse
observables and the Higgs p; at N°LL4+NNLO

Wojciech Bizon,* Pier Francesco Monni,’ Emanuele Re,’° Luca Rottoli,” Paolo Torrielli.?

The resummation of the p; spectrum of a heavy colour singlet was first analysed in the seminal
work by Parisi and Petronzio [13], where it was shown that in the low-p; region the spectrum vanishes
as do/dp; ~ p;, instead of vanishing exponentially as suggested by Sudakov suppression. This
power-law behaviour is due to configurations in which p; vanishes due to cancellations among the
non-vanishing transverse momenta of all emissions. Around and below the peak of the distribution,
this mechanism dominates with respect to kinematical configurations where p; becomes small due
to all the emissions having a small transverse momentum, i.e. the configurations which would yield
an exponential suppression. In order to properly deal with these two competing mechanisms, in
ref. [14] it was proposed to perform the resummation in the impact-parameter (b) space, where both
effects leading to a vanishing p; are handled through a Fourier transform.

To rephrase it: the gt = 0 region (below the peak) is governed by finite-kT emissions
that cancel to give gt = 0. Therefore the perturbative component in this region 1is

computable with around the same perturbative accuracy ot the peak region.

Put differently: the perturbative uncertainty should not explode for gt — 0.



The cross section

@ In impact parameter space:

X O

@ lor fixed y and M » Agcp the gt dependence 1s entirely driven by the
modulation of the integrand given by the Bessel function.
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@ Integrating these curves between 0 and o gives the distribution in dgr2.



The cross section

@ In impact parameter space:

do
X
dydM dq?3.

@ lor fixed y and M » Agcp the gt dependence 1s entirely driven by the
modulation of the integrand given by the Bessel function.

@ The resummation pattern implies that at small gr the perturbative
uncertainty of the integrand scales as:

LL : &(bT){1+O [as(b (bT))/as(M)”

/ dbr brJo(grbr)o (br)
0

NLL: a(bn) {140 [af () — ok}

@ Since as(M) « 1, for the computation to be asymptotically convergent:

1

bo : bo
Qs <1 VbT = lim > AQCD = bmax <

b..(br) br—oo b, (br) Aqco

For all scale choices



a,(Mz) = 0.118, NNLO evolution
I e e L A B R B R BN

as(0.5 GeV) ~ 6.52 -

as(1 GeV) >~ 0.47
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@ If the argument ot as 15 allowed to take too small values, any estimate of
the perturbative uncertainty is hardly meaningtful.



Exercise

@ Based of this pattern:

LL : 5(bT){1—|—(’) [as(b (bT))/as(M)”

N*LL : o(br) {1 + O {a's‘“ (b*l()gT)) o a’:(M)}}

@ We chose a kinematic configuration (Q = M, y = 0) and made the shaft:

LL : o (br) {1 + K [as (,, (,,T)) /as(M)]}

NLL s a(br) {14 K [a (325) — ak(an)])

@ Kis computable but it should be around one at all orders:

[

@ unless renormalon effects (factorially growing perturbative coethicients) are
getting large, but this does not seem the case up to N3LL given the observed
perturbative convergence when moving from LL to N3LL.

@ Guven the perturbative convergence at low g, how comes that perturbative
uncertainties remain so large?
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do /dpr [pb/GeV?]
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Exercise

@ Based of this pattern:

LL : 5(bT){1—|—(’) [as(b (bT))/as(M)”

N*LL : o(br) {1 + O {a's‘“ (b*l()gT)) o a’:(M)}}

@ We chose a kinematic configuration (Q = M, y = 0) and made the shaft:

LL : o (br) {1 + K [as (,, (,,T)) /as(M)]}

NLL s a(br) {14 K [a (325) — ak(an)])

@ Kis computable but it should be around one at all orders:

[

@ unless renormalon effects (factorially growing perturbative coethicients) are
getting large, but this does not seem the case up to N3LL given the observed
perturbative convergence when moving from LL to N3LL.

@ T'he main goal of this exercise 1s not to estimate K , but to study the

behaviour of perturbative uncertainties on the cross section as gr — 0.
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Summary and suggestions

Our numerical simulations seem to meet the theoretical expectation
according to which perturbative uncertainties at gt = 1 GeV are as

under control as at gt = 2 - 3 GeV.

T'his pattern becomes particularly clear when looking at cross sections
differential in ¢1? and not in gt because the spectrum goes to constant

(of course, relative differences should not depend of this):

we suggest to look at the cross section differential in g12 possibly in logarithmic
scale down to gt = 0.1 (this was one of the settings of the benchmark).

&
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It would be interesting to see i all other codes agree on this and 1f not why.

For the record, our estimate of the uncertainties at N3LL for O =Mand y =0
suggests a value K= 2 - 4.

&

We observe no instability at the level of the perturbative uncertainty due to a

different choice of the PDF set.

¢



