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INTRODUCTION



Dark energy, dark matter, inflation, big-bang
singularity, cosmic magnetic field, etc.

A Help constructing a theory of quantum gravity?
Superstring, Horava-Lifshitz, etc.

One of the best ways to understand something may
be to break (modify) it and then to reconstruct it.

A é



# ofd.o.f in general relativity

A10 metric component#, 20-dim phase space @
each point



ALapse N, shiftIN3d metrich;

ds® = —N?dt® + h;;(dz" + N'dt)(dz’ + N’ dt)
AEinsteinHilbert action
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# ofd.o.f in general relativity

A10 metric component#, 20-dim phase space @
each point

AEinsteinHilbert action does not contain time
derivatives of N & Ny py=0 &p, =
All constraints are independent of N &N py &P,
GO2YYdzi S G AGKA Iskclass O2 vy &



{S,QEO0for¥i
Reduces 1 phase space dimension

Alst-class constraint F
{F,QFOforui
Reduces 2 phase space dimensions
Generates a symmetry

Equivalent to a pair of"?-class constraints

[C]iIl MZHZIXY Y O2YLX SGS &8

AFfB = A = B when all constraints are iImpose
(weak equality)
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# ofd.o.f in general relativity

A10 metric component#, 20-dim phase space @
each point

AEinsteinHilbert action does not contain time
derivatives of N & Ny py=0 &p, =
All constraints are independent of N &N py &P,
GO2YYdzi S G AGKA Iskclass O2 vy &

A4 generators of 4dliffeo: It-class constraints

A20¢ (4+4) x 2 = A 4-dim physical phase space @
each pointA

Minimal # ofd.o.f. iIn modified gravity = 2

Can this be saturatedf?




MINIMALLY MODIFIED
GRAVITY (MMG)



Is general relativity unique?

ALovelock theorensays Ifwe assume:
(1) 4-dimensions; (iififfeo invariance; (iif) metric only; (iv)
up to 299-orderS 2 YaRthe formE, =0.

AEffective field theorgderivative expansion) says: -at
low energy If we assume:
(1) 4-dimensions; (iififfeo invariance; (iif) metric only.

AA metric theory with 3eliffeo but with broken 4ediffeo
typically has 3 local physiahb.f (e.g. scalatensor theory,
EFT of inflation/dark energioravaLifshitzgravity)




Example: simple scal@ansor theory

ACovariant action

r=3 [dav=5[OWR+ P(L0)] X = g"B,000
AADM decomposition

ds® = —N?dt* + h;;(dz" + N'dt)(dz’ + N’ dt)

1 N
AUnitary gauge g" = ( %_N L _Ni\,;gj )
11
¢ =1 ‘X=§ﬁ This is a good gaugfé

L. . derivative off istimelike.
AAction in unitary gauge

I = fdtd?’fN\/E {fl(t) [K’UKij ~ K%+ (3)R] + %fl(t)K + f2(IV, t)}

Q*(¢) = f1(t) P(X, ) = f2(N, 1)



Is general relativity unique?

ALovelock theorensays If'we assume:
(1) 4-dimensions; (iififfeo invariance; (i) metric only; (iv)
up to 29-orderS 2 YaRtée formE, =0.

AEffective field theorgderivative expansion) says: -at

low energy If we assume: |
() 4-dimensions; (iifliffeo invariance; (iii) metric only.

AA metric theory with 3ediffeo but with broken 4ddiffeo
typically has 3 local physidhb.f (e.g. scalatensor theory,
EFT of inflation/dark energioravaLifshitzgravity)

Als GR unigue when we assumig4dimensions; (ii) 3d
diffeo invariance; (i) metric only; (iv) 2 local physdalf.
(= 2 polarizations of TT gravitational waves)?




EXAMPLES OF TYPE-I &
TYPE-IIl MMG THEORIES



Typel & typell modified gravity

KatsukiAoki, Antonio De Felic€hunshariLin, SM
AJordan (or matter) frame and MicheleOliosi JCAP 01 (2019) 017

1
I = 5/(143:\/ g’ [Q*(®) R’ + -] + Imatter[giy; matter|
AEinsteinframe g%, = Q%)g),  KMaedu1989

I = l/dﬁl.’,v\/ —g® [R[g"] + -+ ] + Imatter [ (0)g,,,; matter]

2
This Is a modified gravity
because ofion-trivial matter couplingA type-|

AThere are more general scalar tensor theories where
there isno Einstein frameA type-ll




Typel & typell modified gravity

KatsukiAoki, Antonio De Felic€hunsharLin, SM
and MicheleOliosi JCAP 01 (2019) 017

ATypel:
There exists an Einstein frame
Can be recast as GR + exdra.f + matter, which
couple(s) nomntrivially, by change of variables

ATypell:
No Einstein frame
Cannot be recast as GR + exdra.f + matter by
change of variables




Typel minimally modified gravity (MMG)

KatsukiAoki,ChunsharLin and SM, PRD98 (2018) 044022

AThere exists an Einstein frame

ACan be recast as GRnatter, which couple(s) norivially,
by change of variables

AThe most general change of variables = canonical tr.

AMatter coupling just after canonical # breaksdiffeo A
1st-class constraint downgraded td%classA leads to
extrad.o.f in phase spacd inconsistent

AGaugefixing after canonical t&, splits Bt-class constraint
into pair of 29-class constraints

AMatter coupling after canonical tr. + gaugixing A a pair
of 2"9-class constraints remaif, consistent



A typel MMG fitting Planck data
better thanL CDM

KatsukiAoki, Antonio De Felice, SM, Kaioui, and Michelellios| MasroorC.Pookkillath

Af(HU l] K é 2 NE f@g A L] KH < OF Q(’) 7rXi\62005.]|3972

fo=1+ Ltanh| = (< +
= —a1 — —|a1 tan — | —= a
© gl ™ 5t ag \ 2 T a3 = Bag

A3 additional parameters
AD &= 16.6 improvement

Data sets |

Planck highl TTTEEE 2351.98
Planck lowl EE 396.74
Planck lowl TT

Parameters 95% limits

683.07

bao boss drl2

bao \IlldHZ

All chosen data sets: in total y?




Typell minimally modified gravity (MMG

ANo Einstein frame

ACannot be recast as GR + matter by change of
variables

Als there such a theory? Yes!

AExample: Minimal theory of massive gravity
[Antonio De Felice and SM, PLB752 (2016) 302; JCAP1604
(2016) 028; PRL118 (2017) 091104]

AAnother example:
arXiv2004.12549 w/ Antonio De Felice and Andreas Doll



Antonio De Felice, Andreas Doll and Shinji Mukohyama [arXiv 2004.12549]

A Simple construction with a free function V(f)

1. Hamiltonian of GR with 3+1 decomposition

2. Canonical tr to a new frame

3. Add a cosmological const in the new frame

4. Gauge fix

5. Inverse canonical tr back to the original frame

6. Legendre tr to Lagrangian

7. Add minimally-coupled matter fields

2 2 p )\ng p 3MI2))\2 2

L=NY | (B+Kij K = K2 =2V(9)) — — Mp 0ip — — — — MpA (K + ¢)

A V(f) reconstructed from FLRW background

[arXiv: 2009.08718v2 w/ Antonio De Felice & Masroor C. Pookkillath]
A Extension to address Sg tension? [arxiv:2011.04188 w/ Antonio De Felice]



DA 4 EGB GRAVITY WITH 2 DOF

Refs. arXiv:2005.03859 & 2005.08428KatsukiAoki & Mohammad Al orji
arXiv:2010.03973 wKatsukiAoki, Mohammad Alorji& ShuntaroMizuno



SEGB = 2—2 dD.’L‘\/ [ — 2A -+ aRéB]
Rép = R? —4R™R ., + Rouwpo RIPC

A For D=4, the GB term is total derivative and
thus does not contributetoe o mo s

AD A 4 witha = (D —4) a kept fixed?
0/0 = finite?
[Glavan&Lin, PRL124, 081301 (2020)]

A Maybe yes, but requires either extra dof. or Lorentz
violation due to Lovelock theorem




HERL = / d*z(N°Ho + N"H; + Xomo + X'm; + Agr0)

i oy ), e s
M, ij = Rzg + Kk ]ng K. k}C?

i \/_ i i ikl 11 s_l s l s _l s
S []C — R __O“SJTS]C (71 - 261R+5 (M7 - 761M) )|

A 1st class x 6

Wi%(), Hz%
A 2nd class x 4

o ~ 0, 37-[0%0, 3g%0, 3@%0
A10x27 6x21 4=4 A 2 dof



4D theory is unique up to a choice of %G .

I. 3D spatial diffeo invariance Is respected

. # of dof =2

iii. Reduces to GRwhen o = 0

Iv. Correction terms are 4th-order in derivatives

v. If the Weyl tensor of the spatial metric and the
Weyl part of Ky Ky K;Kj vanish for a solution
of (d+1)-dim EGB, then the dA 3 limit of the
solution satisfies eoms of 4D theory.

=)



1 .
Loln = P (—2A + K ;K9 — KiK% + R+ aRipap)

4 y y o1
Ringe = ~3 (8Ri;RY — AR;j M"Y — M;; M)+ 5 (8R® — 4RM — M?)
Kij = Kij — 55%;D*Aar Mij = Ryj + K5 Kij — KipK"

A Valid for specific choice: %G = /7Dy D* (77, //7)
compatible with cosmology & static sol

A dA 3 limit of any solutions of (d+1)-dim EGB
with conformally flat spatial metric and
vanishing Weyl part of K K;-K;Kj are solutions
(e.g. FLRW & spherical sol of Glavan&Lin)



A At classical level, we assume that the matter
action respects local Lorentz invariance.

A At quantum level, Lorentz violation
percolates from gravity sector to matter
sector via graviton loops.

A Such Lorentz violation in matter sector is
suppressed not only by & but also by
negative power of M# and thus is under
control.



A Stability of scalar perturbation

H <0

A Stability of tensor perturbation
a >0

A Propagation of gravitational waves
a<O(1)eV?

A Properties of neutron stars

a<O(1)eV?
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Minimalism in modified gravity

AMinimal # ofd.o.f in modified gravity = 2
can be saturated

ATypel MMG:" Einstein frame
Typell MMG: no Einstein frame

AExamples of typé MMG
GR + canonical tr. + gaufpeing + adding matter
Rich phenomenologyv,; G, etc.

AAn example of typdl MMG
Minimal theory of massive gravity (MTMG)

A Another example of typdl MMG
GR + canonical tr. + cc + gadigeng + inverse canonical tr.
V() reconstructed from FLRW background

ref. arXiv 2009.08718v2 w/ Antonio De Felicav&asroorC.Pookkillath



DA 4 Einstein Gaud3onnet gravity

AWe proposed a consistent theory ofA4 EGB gravity
with 2 dofsin the framework of typell MMG.

ADA 4 limit of any solutions of dim EGB with
conformally flat spatial metric and vanishing Weyl part
of KyKi-KjKi are solutions

Alnteresting phenomenology such as thfetdrm in the
dispersion relation of GWSs.

AConstraints: 1 <0 &>0 a<0O(1)eV™?

Refs. arXiv:2005.03859 & 2005.08428KatsukiAoki & Mohammad Aliorji
arXiv:2010.03973 wKatsukiAoki, Mohammad Aliorji& ShuntaroMizuno



Thank you!



Partial UV Completion of P(
from a Curved Field Space

ShinjiMukohyama(YITP, Kyoto U)

Refs. arxiv:1605.06418 w/ Ramba& YotaWatanabe
arxiv:2010.09184 w/ RyWamba



e.g. Courant and Friedrichs 1948

A Canonical scalar A general solution f =f_(t-x)+f _(t+x)

A For non-linear P(X), superposition is not possible but there still
exist analogues of right - and left-moving modes

A Simple wave (right - or left-moving modes for canonical scalar)
= solution whose image in ( t, c)-plane lies entirely on one of 3 -
characteristics (or 3,-characteristics) (t %h.. %ope
= solution with G = G° (or G, = G,%) = const and an arbitrary
function G,(s.) (or G(s,))
A For a simple wave, t and c are independent of s. (or s) and
thus constant along each C ,-characteristic (or C characteristic).

This means that

A For a given P(X), a simple wave can be constructed by specifying
a constant value of G = G? (or G, = G,°) and s _-dependence (or
s.-dependence) of either t or c



