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INTRODUCTION



Why modified gravity?

• Can we address mysteries in the universe?
Dark energy, dark matter, inflation, big-bang 
singularity, cosmic magnetic field, etc. 

• Help constructing a theory of quantum gravity?
Superstring, Horava-Lifshitz, etc.

• Do we really understand GR?
One of the best ways to understand something may 
be to break (modify) it and then to reconstruct it. 

• …



# of d.o.f. in general relativity
• 10 metric components → 20-dim phase space @ 

each point



ADM decomposition

• Lapse N, shift Ni, 3d metric hij

• Einstein-Hilbert action

• Extrinsic curvature
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# of d.o.f. in general relativity
• 10 metric components → 20-dim phase space @ 

each point

• Einstein-Hilbert action does not contain time 
derivatives of N & Ni

→ pN = 0 & pi = 0
All constraints are independent of N & Ni

→ pN & pi
“commute with” all constraints → 1st-class



1st-class vs 2nd-class

• 2nd-class constraint S
{ S , Ci } ≉ 0 for ∃i
Reduces 1 phase space dimension

• 1st-class constraint F
{ F , Ci } ≈ 0 for ∀i
Reduces 2 phase space dimensions
Generates a symmetry
Equivalent to a pair of 2nd-class constraints

{ Ci | i = 1,2,…} : complete set of independent constraints
A ≈ B                A = B when all constraints are imposed

(weak equality)
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# of d.o.f. in general relativity
• 10 metric components → 20-dim phase space @ 

each point

• Einstein-Hilbert action does not contain time 
derivatives of N & Ni

→ pN = 0 & pi = 0
All constraints are independent of N & Ni

→ pN & pi
“commute with” all constraints → 1st-class

• 4 generators of 4d-diffeo: 1st-class constraints

• 20 – (4+4) x 2 = 4 → 4-dim physical phase space @ 
each point → 2 local physical d.o.f.

Minimal # of d.o.f. in modified gravity = 2 

Can this be saturated?



MINIMALLY MODIFIED 

GRAVITY (MMG)



Is general relativity unique?

• Lovelock theorem says “yes” if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv) 
up to 2nd-order eom’s of the form Eab=0.

• Effective field theory (derivative expansion) says “yes” at 
low energy if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.

• However, cosmological backgrounds break 4d-diffeo while 
keeping 3d-diffeo. 

• A metric theory with 3d-diffeo but with broken 4d-diffeo 
typically has 3 local physical d.o.f. (e.g. scalar-tensor theory, 
EFT of inflation/dark energy, Horava-Lifshitz gravity)

• Is GR unique when we assume:) 4-dimensions; (ii) 3d-diffeo 
invariance; (iii) metric only; (iv) 2 local phys. ? 



Example: simple scalar-tensor theory
• Covariant action

• ADM decomposition

• Unitary gauge

• Action in unitary gauge

This is a good gauge iff
derivative of f is timelike.



Is general relativity unique?
• Lovelock theorem says “yes” if we assume:

(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only; (iv) 
up to 2nd-order eom’s of the form Eab=0.

• Effective field theory (derivative expansion) says “yes” at 
low energy if we assume:
(i) 4-dimensions; (ii) diffeo invariance; (iii) metric only.

• However, cosmological backgrounds break 4d-diffeo while 
keeping 3d-diffeo. 

• A metric theory with 3d-diffeo but with broken 4d-diffeo 
typically has 3 local physical d.o.f. (e.g. scalar-tensor theory, 
EFT of inflation/dark energy, Horava-Lifshitz gravity)

• Is GR unique when we assume: (i) 4-dimensions; (ii) 3d-
diffeo invariance; (iii) metric only; (iv) 2 local physical d.o.f. 
(= 2 polarizations of TT gravitational waves)?

• Answer is “no” →Minimally modified gravity (MMG)



EXAMPLES OF TYPE-I & 

TYPE-II MMG THEORIES



Type-I & type-II modified gravity

• Jordan (or matter) frame

• Einstein-frame

• Do we call this GR? No. This is a modified gravity 
because of non-trivial matter coupling → type-I

• There are more general scalar tensor theories where 
there is no Einstein frame → type-II

K.Maeda (1989)

Katsuki Aoki, Antonio De Felice, Chunshan Lin, SM
and Michele Oliosi, JCAP 01 (2019) 017



Type-I & type-II modified gravity

• Type-I: 
There exists an Einstein frame
Can be recast as GR + extra d.o.f. + matter, which 
couple(s) non-trivially, by change of variables

• Type-II:
No Einstein frame
Cannot be recast as GR + extra d.o.f. + matter by 
change of variables

Katsuki Aoki, Antonio De Felice, Chunshan Lin, SM
and Michele Oliosi, JCAP 01 (2019) 017



Type-I minimally modified gravity (MMG)

• # of local physical d.o.f. = 2

• There exists an Einstein frame

• Can be recast as GR + matter, which couple(s) non-trivially, 
by change of variables

• The most general change of variables = canonical tr.

• Matter coupling just after canonical tr. → breaks diffeo→
1st-class constraint downgraded to 2nd-class → leads to 
extra d.o.f. in phase space → inconsistent

• Gauge-fixing after canonical tr. → splits 1st-class constraint 
into pair of 2nd-class constraints

• Matter coupling after canonical tr. + gauge-fixing → a pair 
of 2nd-class constraints remain → consistent

Katsuki Aoki, Chunshan Lin and SM, PRD98 (2018) 044022



A type-I MMG fitting Planck data 
better than LCDM

• f(H) theory with f’(C) = f,C

• 3 additional parameters

• Dc2 = 16.6 improvement 

Katsuki Aoki, Antonio De Felice, SM, Karim Noui, and Michele Oliosi, Masroor C. Pookkillath
arXiv:2005.13972(H < 0)



Type-II minimally modified gravity (MMG)

• # of local physical d.o.f. = 2

• No Einstein frame

• Cannot be recast as GR + matter by change of 
variables

• Is there such a theory? Yes!

• Example: Minimal theory of massive gravity 
[Antonio De Felice and SM, PLB752 (2016) 302; JCAP1604 
(2016) 028; PRL118 (2017) 091104]

• Another example: 
arXiv 2004.12549 w/ Antonio De Felice and Andreas Doll



A new theory of type-II MMG

• Simple construction with a free function V(f)

• V(f) reconstructed from FLRW background

• cGW = 1, no extra dof

• Can reduce H0 tension from 4s to 1.3s
[arXiv: 2009.08718v2 w/ Antonio De Felice & Masroor C. Pookkillath]

• Extension to address S8 tension?  [arXiv:2011.04188 w/ Antonio De Felice]

1. Hamiltonian of GR with 3+1 decomposition

2. Canonical tr to a new frame

3. Add a cosmological const in the new frame

4. Gauge fix

5. Inverse canonical tr back to the original frame

6. Legendre tr to Lagrangian

7. Add minimally-coupled matter fields

Antonio De Felice, Andreas Doll and Shinji Mukohyama [arXiv 2004.12549]



D→4 EGB GRAVITY WITH 2 DOF

Refs. arXiv:2005.03859 & 2005.08428 w/ Katsuki Aoki & Mohammad Ali Gorji
arXiv:2010.03973 w/ Katsuki Aoki, Mohammad Ali Gorji & Shuntaro Mizuno



EGB theory and D→4

• For D=4, the GB term is total derivative and 

thus does not contribute to eom’s. 

• D → 4 with                       kept fixed?

0/0 = finite? 
[Glavan&Lin, PRL124, 081301 (2020)]

• Maybe yes, but requires either extra dof. or Lorentz 

violation due to Lovelock theorem 

• The best we can do without extra d.o.f. is to keep 

3d diffeo → MMG framework



Hamiltonian of 4D theory with 2 dof

• 1st class x 6

• 2nd class x 4

• 10x2 – 6x2 – 4 = 4 → 2 dof



5 properties of 4D theory

i. 3D spatial diffeo invariance is respected

ii. # of dof = 2

iii. Reduces to GR when

iv. Correction terms are 4th-order in derivatives

v. If the Weyl tensor of the spatial metric and the 

Weyl part of KikKjl–KilKjk vanish for a solution 

of (d+1)-dim EGB, then the d→3 limit of the 

solution satisfies eoms of 4D theory.

A consistent theory of D→4 EGB gravity

4D theory is unique up to a choice of     .



Lagrangian of 4D theory with 2 dof

• Valid for specific choice:

compatible with cosmology & static sol

• d→3 limit of any solutions of (d+1)-dim EGB 

with conformally flat spatial metric and 

vanishing Weyl part of KikKji-KilKjk are solutions 

(e.g. FLRW & spherical sol of Glavan&Lin)



Lorentz violation under control

• At classical level, we assume that the matter 

action respects local Lorentz invariance. 

• At quantum level, Lorentz violation 

percolates from gravity sector to matter 

sector via graviton loops. 

• Such Lorentz violation in matter sector is 

suppressed not only by      but also by 

negative power of Mpl
2 and thus is under 

control. 



Constraints

• Stability of scalar perturbation

• Stability of tensor perturbation

• Propagation of gravitational waves

• Properties of neutron stars
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Minimalism in modified gravity
• Minimal # of d.o.f. in modified gravity = 2

can be saturated →minimally modified gravity (MMG)

• Type-I MMG: ∃Einstein frame
Type-II MMG: no Einstein frame

• Examples of type-I MMG
GR + canonical tr. + gauge-fixing + adding matter
Rich phenomenology: wDE, Geff, etc.
f(H) theory can fit Planck data batter than LCDM

• An example of type-II MMG
Minimal theory of massive gravity (MTMG)

• Another example of type-II MMG
GR + canonical tr. + cc + gauge-fixing + inverse canonical tr. 
V(f) reconstructed from FLRW background
Can reduce H0 tension from 4s to 1.3s
ref. arXiv: 2009.08718v2 w/ Antonio De Felice & Masroor C. Pookkillath



D→4 Einstein Gauss-Bonnet gravity

• We proposed a consistent theory of D→4 EGB gravity 
with 2 dofs in the framework of type-II MMG. 

• Under a set of reasonable assumptions (i)-(v), the 
consistent theory is unique up to a choice of a 
constraint that stems from a temporal gauge condition.

• D→4 limit of any solutions of D-dim EGB with 
conformally flat spatial metric and vanishing Weyl part 
of KikKji-KilKjk are solutions

• Interesting phenomenology such as the k4 term in the 
dispersion relation of GWs.

• Constraints:                 ,                   ,

Refs. arXiv:2005.03859 & 2005.08428 w/ Katsuki Aoki & Mohammad Ali Gorji
arXiv:2010.03973 w/ Katsuki Aoki, Mohammad Ali Gorji & Shuntaro Mizuno



Thank you!



Partial UV Completion of P(X) 
from a Curved Field Space

Shinji Mukohyama (YITP, Kyoto U)

Refs. arxiv:1605.06418 w/ Ryo Namba & Yota Watanabe
arxiv:2010.09184 w/ Ryo Namba



SIMPLE WAVES

• Canonical scalar → general solution f = f+(t-x)+f-(t+x)

• For non-linear P(X), superposition is not possible but there still 

exist analogues of right- and left-moving modes

• Simple wave (right- or left-moving modes for canonical scalar)

= solution whose image in (t, c)-plane lies entirely on one of Γ--

characteristics (or Γ+-characteristics)

= solution with G- = G-
0 (or G+ = G+

0 ) = const and an arbitrary 

function G+(s-) (or G-(s+))

→ For a simple wave, t and c are independent of s+ (or s-) and 

thus constant along each C+-characteristic (or C--characteristic). 

This means that each C+-characteristic (or C--characteristic) 

carries a constant x±(t,c) and thus is a straight line in (t,x)-plane.

• For a given P(X), a simple wave can be constructed by specifying 

a constant value of G- = G-
0 (or G+ = G+

0 ) and s--dependence (or 

s+-dependence) of either t or c

e.g. Courant and Friedrichs 1948

(𝜏 = ሶ𝜙, 𝜒 = 𝜙′)



CAUSTICS OF SIMPLE WAVE

• For a simple wave with G- = G-
0 (or G+ = G+

0 ) = const, t and c are 

independent of s+ (or s-) but depend on s- (or s+) in general. 

• Thus, for generic P(X), x±(t, c) may have different values for 

different s- (or s+), meaning that different C+-characteristics (or C-

-characteristics) are straight lines with different slopes in general. 

• In this case, different C+-characteristics carrying different constant 

values of t and c intersect at a point. → caustic singularity

Example with P(X) = X + X2/2

G- = ln 2,  c = 0.7 exp(-s-
2)

s-

s+

Caustic

Babichev 2016



CONCLUSION IN 2016

• We have studied nonlinear dynamics of shift-symmetric k-

essence fields in Minkowski spacetime with planar symmetry. 

• In generic simple waves (analogue of right- and left-moving 

modes), different characteristics carrying different values of 

first-derivatives of the scalar field may intersect and thus form 

caustic singularities. 

• Only in the canonical and the DBI scalar theories, C±-

characteristics are parallel to each other for any simple waves. 

Any other shift-symmetric k-essence fields form caustics. 

• Near the caustics, the theory must be replaced by some UV 

completion. K-essence fields are still useful as low-E EFT away 

from caustics. 

arxiv:1605.06418 w/ Ryo Namba & Yota Watanabe



2-field model with curved field space
• Distance conjecture → negatively curved moduli/field space

simplest: 2d hyperbolic field space

• Simple 2-field model with linear kinetic term

• EOMs for large b

• Single-field EFT

This is P(X) !
with v(f) (= V(bc)) being the Legendre transformation of P(X)

c.f. This 2-field model is similar to the gelaton (Tolley&Weyman 2010) but has better 
control of the field space metric and the mass of the 2nd field.



Caustic resolved!
Single-field EFT Two-field completion

C
au

stic!
Resolved!



CONCLUSION IN 2020

• Only in the canonical and the DBI scalar theories, C±-

characteristics are parallel to each other for any simple waves. 

Any other shift-symmetric k-essence fields form caustics. 

• We have proposed a two-field partial completion of P(X) with a 

potential, which is the Legendre transformation of P(X).

• Near the would-be caustics, the single-field EFT is replaced by 

the two-field completion and would-be caustic is resolved. The 

P(X) model is still useful as a low-E EFT away from caustics.

• We have also studied cosmology based on the two-field 

completion. 

arxiv:2010.09184 w/ Ryo Namba



Thank you!


