A Bit Rate Bound on Superluminal Communication With Xi Tong (童曦) and Yuhang Zhu (祝浴航) Based on 2012.11278 Yi Wang (\pm —), Hong Kong University of Science and Technology How far can our civilization spread? With *c* constraint | Without *c* constraint #### Possibilities to get rid of the *c* limitation? | Approach | Definition | Matter violates | СТС | Sample Reference | |--------------------------|---|-----------------|--------------------|---| | P(X) | $L = P(X), \qquad X \equiv -\frac{1}{2}(\partial \phi)^2$ | positivity | N | Armendariz-Picon, Damour,
Mukhanov, 1999 | | Alcubierre
Warp-drive | $ds^{2} = -dt^{2} + dx^{2} + dy^{2} + (dz - v_{s}f(r_{s})dt)^{2}$ | DEC | Υ | Alcubierre 1994 | | Krasnikov
Tube | $ds^2 = -(dt - dx)(dt + k(t, x)dx)$ | WEC | Υ | Krasnikov 1995,
Everett, Roman 1997 | | Wormhole | $ds^{2} = -e^{2\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - b(r)/r} + r^{2}d\Omega^{2}$ | WEC | N:static
Y:move | Morris, Thorne 1988 | | Extra D | $ds^{2} = e^{2A}(-hdt^{2} + dx^{2}) + e^{2B}d\tilde{s}_{D-4}^{2}$ | NEC | N | Rubakov, Shaposhnikov,
1983 | See also: Einstein-Aether Waves (<u>Jacobson, Mattingly 2004</u>), QED with plates (<u>Scharnhorst 1990</u>) or gravity (<u>Drummond, Hathrell 1980</u>), Gödel Universe (<u>Gödel 1949</u>), Tipler cylinder (<u>Tipler 1974</u>), van Stockum dust (<u>Lanczos 1924</u>), ... For reviews, see Lobo 2017a, Lobo 2017b, Krasnikov 2018, Shoshany 2019. # Possibilities to get rid of the *c* limitation? | Approach | De | efinition | Matter violates | СТС | Sample Reference | |--------------------------|--|--|-----------------|----------|--| | P(X) | L=P(X), | $X \equiv -\frac{1}{2}(\partial \phi)^2$ | positivity | N | Armendariz-Picon, Damour,
Mukhanov, 1999 | | Alcubierre
Warp-drive | $ds^2 = -dt^2 + dx^2 - dt^2 -$ | $+dy^2 + (dz - v_s f(r_s)dt)^2$ | DEC | Υ | Alcubierre 1994 | | Krasnikov
Tube | $ds^2 = -(dt -$ | dx)(dt + k(t,x)dx) | WEC | Υ | Krasnikov 1995,
Everett, Roman 1997 | | Wormhole | $ds^2 = -e^{2\Phi(r)}dt^2$ | $\frac{dr^2}{dr^2}$ | | N:static | Morris, Thorne 1988 | | Extra D | $ds^2 = e^{2A}(-hdt)$ | | | | Rubakov, Shaposhnikov,
1983 | | | ein-Aether Waves (<u>J</u>
, Gödel Universe (<u>Gö</u> | | | | or gravity (<u>Drummond,</u>
anczos 1924), | | For reviews, se | ee <u>Lobo 2017a</u> , <u>Lobo 2</u> | 20 | | | | #### Possibilities to get rid of the *c* limitation? | Approach | Definition | Matter violates | СТС | Sample Reference | |--------------------------|---|-----------------|--------------------|---| | P(X) | $L = P(X), \qquad X \equiv -\frac{1}{2}(\partial \phi)^2$ | positivity | N | Armendariz-Picon, Damour,
Mukhanov, 1999 | | Alcubierre
Warp-drive | $ds^{2} = -dt^{2} + dx^{2} + dy^{2} + (dz - v_{s}f(r_{s})dt)^{2}$ | DEC | Υ | Alcubierre 1994 | | Krasnikov
Tube | $ds^2 = -(dt - dx)(dt + k(t, x)dx)$ | WEC | Υ | Krasnikov 1995,
Everett, Roman 1997 | | Wormhole | $ds^{2} = -e^{2\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - b(r)/r} + r^{2}d\Omega^{2}$ | WEC | N:static
Y:move | Morris, Thorne 1988 | | Extra D | $ds^{2} = e^{2A}(-hdt^{2} + dx^{2}) + e^{2B}d\tilde{s}_{D-4}^{2}$ | NEC | N | Rubakov, Shaposhnikov,
1983 | See also: Einstein-Aether Waves (<u>Jacobson, Mattingly 2004</u>), QED with plates (<u>Scharnhorst 1990</u>) or gravity (<u>Drummond, Hathrell 1980</u>), Gödel Universe (<u>Gödel 1949</u>), Tipler cylinder (<u>Tipler 1974</u>), van Stockum dust (<u>Lanczos 1924</u>), ... For reviews, see Lobo 2017a, Lobo 2017b, Krasnikov 2018, Shoshany 2019. $$\mathcal{L} = X - V$$ $$\mathcal{L} = P(\phi, X)$$ $$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \square \phi$$ $$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$ + $G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right]$ $$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$ $$+ G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right]$$ $$L_4^{\text{bH}} \equiv F_4(\phi, X) \epsilon^{\mu\nu\rho}{}_{\sigma} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} ,$$ $$L_5^{\text{bH}} \equiv F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'}$$ $$S[g,\phi]=\int d^4x\sqrt{-g}\, \Big[f_0(X,\phi)+f_1(X,\phi)\Box\phi+f_2(X,\phi)R+C_{(2)}^{\mu u ho\sigma}\phi_{\mu u}\phi_{ ho\sigma}+f_3(X,\phi)G_{\mu u}\phi^{\mu u}+C_{(3)}^{\mu u ho\sigmalphaeta}\phi_{\mu u}\phi_{ ho\sigma}\phi_{lphaeta}\Big],$$ where X is the kinetic energy of the scalar field, $\phi_{\mu\nu}= abla_\mu abla_ u\phi$, and the quadratic terms in $\phi_{\mu\nu}$ are given by $$C^{\mu u ho\sigma}_{(2)} \phi_{\mu u} \phi_{ ho\sigma} = \sum_{A=1}^5 a_A(X,\phi) L_A^{(2)},$$ where $$L_1^{(2)} = \phi_{\mu\nu}\phi^{\mu\nu}, \quad L_2^{(2)} = (\Box\phi)^2, \quad L_3^{(2)} = (\Box\phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}, \quad L_4^{(2)} = \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu}, \quad L_5^{(2)} = (\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2,$$ and the cubic terms are given by $$C^{\mu u ho\sigmalphaeta}_{(3)}\phi_{\mu u}\phi_{ ho\sigma}\phi_{lphaeta}=\sum_{A=1}^{10}b_A(X,\phi)L_A^{(3)},$$ where $$\begin{split} L_{1}^{(3)} &= (\Box \phi)^{3}, \quad L_{2}^{(3)} = (\Box \phi)\phi_{\mu\nu}\phi^{\mu\nu}, \quad L_{3}^{(3)} = \phi_{\mu\nu}\phi^{\nu\rho}\phi_{\rho}^{\mu}, \quad L_{4}^{(3)} = (\Box \phi)^{2}\phi_{\mu}\phi^{\mu\nu}\phi_{\nu}, \\ L_{5}^{(3)} &= \Box \phi\phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho}, \quad L_{6}^{(3)} = \phi_{\mu\nu}\phi^{\mu\nu}\phi_{\rho}\phi^{\rho\sigma}\phi_{\sigma}, \quad L_{7}^{(3)} = \phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho\sigma}\phi_{\sigma}, \\ L_{8}^{(3)} &= \phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho}\phi_{\sigma}\phi^{\sigma\lambda}\phi_{\lambda}, \quad L_{9}^{(3)} = \Box \phi(\phi_{\mu}\phi^{\mu\nu}\phi_{\nu})^{2}, \quad L_{10}^{(3)} = (\phi_{\mu}\phi^{\mu\nu}\phi_{\nu})^{3}. \end{split}$$ The a_A and b_A are arbitrary functions of ϕ and X. Figure from Ezquiaga, Miguel Zumalacarregui (2018) See also Shinji's & Lavinia's & Filippo's talks on Monday Considering a huge literature of exotic matter discussed in inflationary cosmology, dark energy, etc, wouldn't it make more sense to study exotic matter for superluminal travel? "The Rise of Field Theory" # Outline: - Motivation (√) - Theory and Intuition - Derivation of Bit Rate Bound - Discussions ## **Theory and Intuition: The K-Essence Theory** K-essence: $$\mathcal{L} = \mathcal{L}(X)$$, $X = -\frac{1}{2}(\partial \phi)^2$ Sound speed: $$c_s$$: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$ Thus, if $$\mathcal{L}_{XX} < 0$$, $c_s > 1$. Armendzriz-Picon, Damour, Mukhanov 1999, Garriga, Mukhanov 1999, Babichev, Mukhanov, Vikman 2007 ## **Theory and Intuition: The K-Essence Theory** K-essence: $$\mathcal{L} = \mathcal{L}(X)$$, $X = -\frac{1}{2}(\partial \phi)^2$ Sound speed: $$c_s$$: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$ Thus, if $\mathcal{L}_{XX} < 0$, $c_s > 1$. Armendzriz-Picon, Damour, Mukhanov 1999, Garriga, Mukhanov 1999, Babichev, Mukhanov, Vikman 2007 # Comment on the $\mathcal{L}_{XX} < 0$ branch: - No CTC - Positivity violation: UV competition cannot be local & analytical & unitary & Lorentz inv. Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 2006, Shore 2007, c.f. Jackson 3rd Edition, Sec 7.10 See also Claudia's & Brando's talks yesterday. ## Theory and Intuition: Superluminality and Non-Linearity K-essence: $$\mathcal{L} = \mathcal{L}(X)$$, $X = -\frac{1}{2}(\partial \phi)^2$ Sound speed: $$c_s$$: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$ Thus, if $$\mathcal{L}_{XX} < 0$$ $c_s > 1$. Non-linear for $\mathcal{L}_{XX} \neq 0$ Consider $\phi = \phi_0(t) + \varphi(\mathbf{x}, t)$ 2^{nd} order $\Rightarrow \dot{\phi}_0^2 \dot{\phi}^2 \Rightarrow c_s$ $3^{\rm rd}$ order $\Rightarrow \dot{\phi}_0 \dot{\varphi}^3 \Rightarrow \varphi$ cannot be large c.f. EFT of Inflation Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007 #### Theory and Intuition: Superluminality and Non-Linearity K-essence: $$\mathcal{L} = \mathcal{L}(X)$$, $X = -\frac{1}{2}(\partial \phi)^2$ Sound speed: $$c_s$$: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$ Thus, if $\mathcal{L}_{XX} < 0$ $c_s > 1$. Non-linear for $\mathcal{L}_{XX} \neq 0$ Consider $\phi = \phi_0(t) + \varphi(\mathbf{x}, t)$ $$2^{\rm nd}$$ order $\Rightarrow \dot{\phi}_0^2 \dot{\varphi}^2 \Rightarrow c_s$ $3^{\rm rd}$ order $\Rightarrow \dot{\phi}_0 \dot{\varphi}^3 \Rightarrow \varphi$ cannot be large For $c_s > 1$, (bit rate) = (decreasing function of c_s) Thus: For low latency: $c_s > 1$ preferred For high bit rate: $c_s \leq 1$ preferred # Outline: - Motivation (√) - Theory and Intuition (√) - Derivation of Bit Rate Bound - Discussions $$\mathcal{L}(X) = \sum_{n=0}^{\infty} \frac{1}{n!} \partial_X^n \mathcal{L}(X_0) (X - X_0)^n$$ $$\mathcal{L}(X) = (\text{total derivatives}) + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}},$$ with $$\mathcal{L}^{(2)} \equiv \frac{1}{2} \left[\left(c_1 + \frac{c_2 \dot{\phi}_0^2}{2\Lambda^4} \right) \dot{\varphi}^2 - c_1 (\nabla \varphi)^2 \right]$$ $$\mathcal{L}_{int} \equiv \left(\frac{c_2 \dot{\phi}_0}{2\Lambda^4} + \frac{c_3 \dot{\phi}_0^3}{6\Lambda^8} \right) \dot{\varphi}^3 - \frac{c_2 \dot{\phi}_0}{2\Lambda^4} \dot{\varphi} (\nabla \varphi)^2 + \cdots$$ Requiring $\mathcal{L}_{int} < \mathcal{L}^{(2)}$ - $\Rightarrow |\dot{\phi}| < \frac{\dot{\phi}_0}{2 \, c_s^2}$ (note: naively it would be $|\dot{\phi}| < \dot{\phi}_0$) - \Rightarrow Constraint on stress tensor: $\left|T_{\mu\nu}^{(2)}\right| \sim c_s^{-1} \dot{\varphi}^2 < \frac{\dot{\varphi}_0^2}{c_s^5}$ $$\Rightarrow$$ Constraint on stress tensor: $\left|T_{\mu\nu}^{(2)}\right| \sim c_s^{-1} \dot{\varphi}^2 < \frac{\dot{\varphi}_0^2}{c_s^5}$ How should this constraint be imposed? - Locally (LC) on $\left|T_{\mu\nu}^{(2)}(\mathbf{x})\right|$: Pointwise in spacetime - Globally (GC) on E(mode): Each mode is linear - Averaged & Globally (AGC) on $\int d (\text{mode}) P (\text{mode}) E (\text{mode})$: An average mode is linear Theoretically: LC and GC too strong, AGC more reasonable Operationally: AGC is simple to use (more later) This is the classical constraint on information Quantum mechanical: quanta - Short wavelength: large energy per quanta - Long wavelength: slowly varying, thus low bit rate Model of semi-classical signal: coherent state $$|z\rangle = \exp\left(-\frac{1}{2}\int_{\vec{k}}|z_{\vec{k}}|^2\right)\exp\left(\int_{\vec{k}}z_{\vec{k}}a_{\vec{k}}^{\dagger}\right)|0\rangle$$ Shannon entropy: $$S[P] = -\int \mathcal{D}^2 \hat{z} P[\hat{z}] \ln P[\hat{z}] \quad \text{with} \quad \int \mathcal{D}^2 \hat{z} P[\hat{z}] = 1.$$ Area-density of energy: $$E[\hat{z}] \equiv \frac{\langle z|H^{(2)}|z\rangle}{L_y L_z} = \int \frac{dk}{2\pi} \omega_k |\hat{z}_k|^2$$ AGC: $$\int \mathcal{D}^2 \hat{z} P[\hat{z}] E[\hat{z}] \lesssim \varepsilon_{\max} L_x \qquad \qquad \varepsilon_{\max} \sim \frac{\dot{\phi}_0^2}{c_s^6} \ \ \text{(maximal energy density)}$$ ## Model of semi-classical signal: coherent state $$|z_{\vec{k}}|^2 \exp\left(\int_{\vec{k}} z_{\vec{k}} a_{\vec{k}}^{\dagger}\right) |0\rangle$$ The quantity to maximize $$S[P] = -\int \mathcal{D}^2 \hat{z} P[\hat{z}] \ln P[\hat{z}] \quad \text{with} \quad \int \mathcal{D}^2 \hat{z} P[\hat{z}] = 1.$$ Area-density of energy: $$E[\hat{z}] \equiv \frac{\langle z|H^{(2)}|z\rangle}{L_y L_z} = \int \frac{dk}{2\pi} \omega_k |\hat{z}_k|^2$$ constraints AGC: $$\int \mathcal{D}^2 \hat{z} P[\hat{z}] E[\hat{z}] \lesssim \varepsilon_{\text{max}} L_x$$ Using methods in statistical physics: $$0 = \delta \left(S[P] - (\alpha - 1) \int \mathcal{D}^2 \hat{z} P - \beta \int \mathcal{D}^2 \hat{z} P E \right)$$ $$P_* = e^{-\alpha - \beta E}$$ AGC bit rate bound: $$R_* = \frac{c_s S_*}{L_r} \equiv \Lambda \mathcal{R}_*$$ where γ is the solution to $$\frac{1}{\gamma^2} \int_0^{\gamma} dx \frac{1+x}{1+xe^x} = \frac{2\pi \dot{\phi}_0^2 L_y L_z}{c_s^5 \Lambda^2} .$$ "Low temperature" limit: $\frac{\dot{\phi}_0^2 L_y L_z}{\Lambda^2} \ll \frac{c_s^5}{2\pi}$ $$R_* \approx \left(\frac{2.64}{\pi}\dot{\phi}_0^2 L_y L_z\right)^{1/2} c_s^{-5/2}$$ "High temperature" limit: $\frac{\dot{\phi}_0^2 L_y L_z}{\Lambda^2} \gg \frac{c_s^5}{2\pi}$ $$R_* \approx \frac{\Lambda}{2\pi} \ln \frac{2\pi \dot{\phi}_0^2 L_y L_z}{c_s^5 \Lambda^2}$$ # Outline: - Motivation (√) - Theory and Intuition (√) - Derivation of Bit Rate Bound (√) - Discussions #### Conclusion: - Superluminal ⇒ nonlinearity - Nonlinearity ⇒ energy density bound, AGC - + quantization ⇒ bit rate bound #### **Discussions:** - SM constraints on Lorentz-violating sectors? - More general scalar-tensor theories or higher-dim EFT operators? - More information theory justifications of AGC? - Other superluminal mechanisms, say, extra-dim? - Semi-classical. Go fully quantum? Thank Vous ## **Appendix: Energy Conditions** | Energ | y Condition | Definition | Eigenvalues $\widehat{T}_{\mu u} = \operatorname{diag} \left\{ ho, p, p, p \right\}$ [3] | Implies | |-------|-------------|---|--|----------| | WEC | (weak) | $T_{\mu\nu}V^{\mu}V^{\nu} \ge 0 [1]$ | $ \rho \ge 0, \rho + p_i \ge 0 $ | NEC | | DEC | (dominant) | WEC & $T_{\mu u} V^{ u}$ not spacelike [2] | $ \rho \ge 0, -\rho \le p_i \le \rho $ | WEC, NEC | | SEC | (strong) | $(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T)V^{\mu}V^{\nu} \ge 0$ | $\rho + p_i \ge 0, \rho + \sum_i p_i \ge 0$ | NEC | | NEC | (null) | $T_{\mu\nu}L^{\mu}L^{\nu} \ge 0$ | $ \rho + p_i \ge 0 $ | | #### Remarks: - [1] By continuity, this also implies $T_{\mu\nu}L^{\mu}L^{\nu} \geq 0$. - [2] Equivalent definition: For orthonormal basis, $T^{00} \ge |T^{\mu\nu}|$. - [3] See Hawking & Ellis for other classes of $T_{\mu\nu}$. Notations: V^{μ} , W^{μ} are general time-like vectors; L^{μ} is a general null vector; $\mu = 0, 1, 2, 3$ and i = 1, 2, 3.