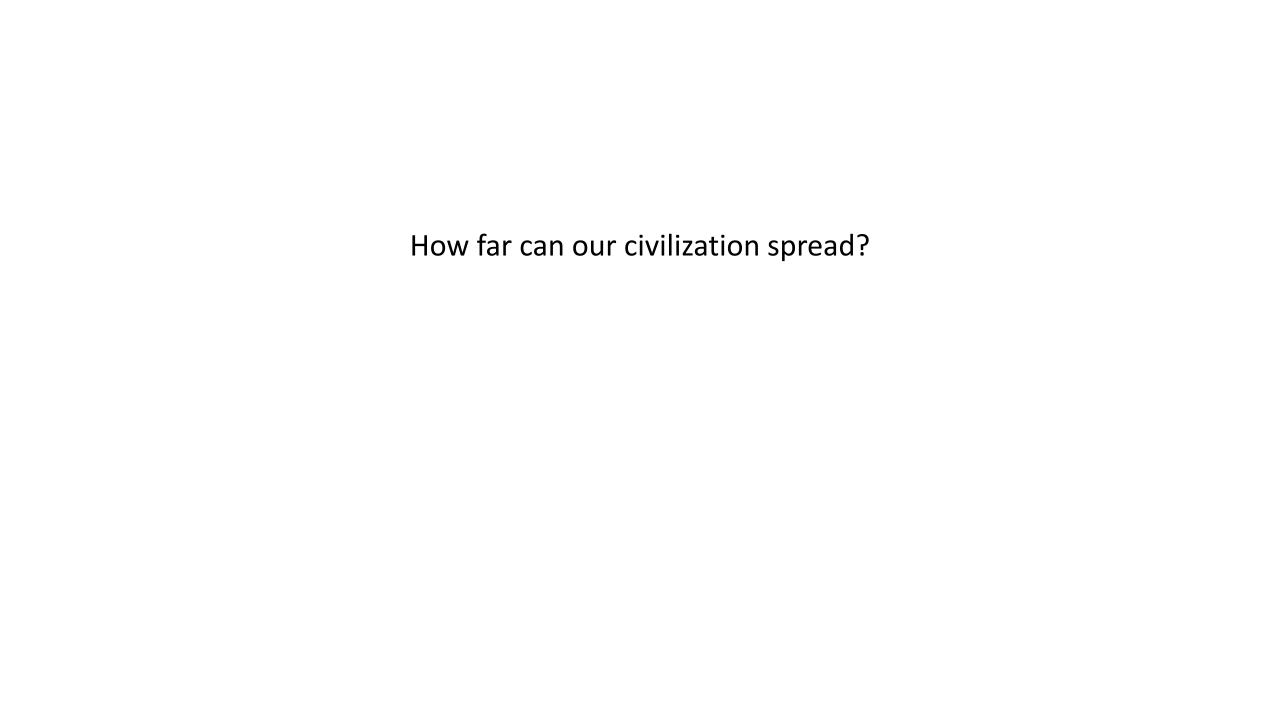
A Bit Rate Bound on Superluminal Communication

With Xi Tong (童曦) and Yuhang Zhu (祝浴航)

Based on 2012.11278

Yi Wang (\pm —), Hong Kong University of Science and Technology



How far can our civilization spread?

With *c* constraint | Without *c* constraint

Possibilities to get rid of the *c* limitation?

Approach	Definition	Matter violates	СТС	Sample Reference
P(X)	$L = P(X), \qquad X \equiv -\frac{1}{2}(\partial \phi)^2$	positivity	N	Armendariz-Picon, Damour, Mukhanov, 1999
Alcubierre Warp-drive	$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + (dz - v_{s}f(r_{s})dt)^{2}$	DEC	Υ	Alcubierre 1994
Krasnikov Tube	$ds^2 = -(dt - dx)(dt + k(t, x)dx)$	WEC	Υ	Krasnikov 1995, Everett, Roman 1997
Wormhole	$ds^{2} = -e^{2\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - b(r)/r} + r^{2}d\Omega^{2}$	WEC	N:static Y:move	Morris, Thorne 1988
Extra D	$ds^{2} = e^{2A}(-hdt^{2} + dx^{2}) + e^{2B}d\tilde{s}_{D-4}^{2}$	NEC	N	Rubakov, Shaposhnikov, 1983

See also: Einstein-Aether Waves (<u>Jacobson, Mattingly 2004</u>), QED with plates (<u>Scharnhorst 1990</u>) or gravity (<u>Drummond, Hathrell 1980</u>), Gödel Universe (<u>Gödel 1949</u>), Tipler cylinder (<u>Tipler 1974</u>), van Stockum dust (<u>Lanczos 1924</u>), ...

For reviews, see Lobo 2017a, Lobo 2017b, Krasnikov 2018, Shoshany 2019.

Possibilities to get rid of the *c* limitation?

Approach	De	efinition	Matter violates	СТС	Sample Reference
P(X)	L=P(X),	$X \equiv -\frac{1}{2}(\partial \phi)^2$	positivity	N	Armendariz-Picon, Damour, Mukhanov, 1999
Alcubierre Warp-drive	$ds^2 = -dt^2 + dx^2 - dt^2 -$	$+dy^2 + (dz - v_s f(r_s)dt)^2$	DEC	Υ	Alcubierre 1994
Krasnikov Tube	$ds^2 = -(dt -$	dx)(dt + k(t,x)dx)	WEC	Υ	Krasnikov 1995, Everett, Roman 1997
Wormhole	$ds^2 = -e^{2\Phi(r)}dt^2$	$\frac{dr^2}{dr^2}$		N:static	Morris, Thorne 1988
Extra D	$ds^2 = e^{2A}(-hdt)$				Rubakov, Shaposhnikov, 1983
	ein-Aether Waves (<u>J</u> , Gödel Universe (<u>Gö</u>				or gravity (<u>Drummond,</u> anczos 1924),
For reviews, se	ee <u>Lobo 2017a</u> , <u>Lobo 2</u>	20			

Possibilities to get rid of the *c* limitation?

Approach	Definition	Matter violates	СТС	Sample Reference
P(X)	$L = P(X), \qquad X \equiv -\frac{1}{2}(\partial \phi)^2$	positivity	N	Armendariz-Picon, Damour, Mukhanov, 1999
Alcubierre Warp-drive	$ds^{2} = -dt^{2} + dx^{2} + dy^{2} + (dz - v_{s}f(r_{s})dt)^{2}$	DEC	Υ	Alcubierre 1994
Krasnikov Tube	$ds^2 = -(dt - dx)(dt + k(t, x)dx)$	WEC	Υ	Krasnikov 1995, Everett, Roman 1997
Wormhole	$ds^{2} = -e^{2\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - b(r)/r} + r^{2}d\Omega^{2}$	WEC	N:static Y:move	Morris, Thorne 1988
Extra D	$ds^{2} = e^{2A}(-hdt^{2} + dx^{2}) + e^{2B}d\tilde{s}_{D-4}^{2}$	NEC	N	Rubakov, Shaposhnikov, 1983

See also: Einstein-Aether Waves (<u>Jacobson, Mattingly 2004</u>), QED with plates (<u>Scharnhorst 1990</u>) or gravity (<u>Drummond, Hathrell 1980</u>), Gödel Universe (<u>Gödel 1949</u>), Tipler cylinder (<u>Tipler 1974</u>), van Stockum dust (<u>Lanczos 1924</u>), ...

For reviews, see Lobo 2017a, Lobo 2017b, Krasnikov 2018, Shoshany 2019.

$$\mathcal{L} = X - V$$

$$\mathcal{L} = P(\phi, X)$$

$$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \square \phi$$

$$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

+ $G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right]$

$$\mathcal{L} = P(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R + G_{4,X} \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$
$$+ G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} G_{5,X} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right]$$

$$L_4^{\text{bH}} \equiv F_4(\phi, X) \epsilon^{\mu\nu\rho}{}_{\sigma} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} ,$$

$$L_5^{\text{bH}} \equiv F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'}$$

$$S[g,\phi]=\int d^4x\sqrt{-g}\, \Big[f_0(X,\phi)+f_1(X,\phi)\Box\phi+f_2(X,\phi)R+C_{(2)}^{\mu
u
ho\sigma}\phi_{\mu
u}\phi_{
ho\sigma}+f_3(X,\phi)G_{\mu
u}\phi^{\mu
u}+C_{(3)}^{\mu
u
ho\sigmalphaeta}\phi_{\mu
u}\phi_{
ho\sigma}\phi_{lphaeta}\Big],$$

where X is the kinetic energy of the scalar field, $\phi_{\mu\nu}=
abla_\mu
abla_
u\phi$, and the quadratic terms in $\phi_{\mu\nu}$ are given by

$$C^{\mu
u
ho\sigma}_{(2)} \phi_{\mu
u} \phi_{
ho\sigma} = \sum_{A=1}^5 a_A(X,\phi) L_A^{(2)},$$

where

$$L_1^{(2)} = \phi_{\mu\nu}\phi^{\mu\nu}, \quad L_2^{(2)} = (\Box\phi)^2, \quad L_3^{(2)} = (\Box\phi)\phi^{\mu}\phi_{\mu\nu}\phi^{\nu}, \quad L_4^{(2)} = \phi^{\mu}\phi_{\mu\rho}\phi^{\rho\nu}\phi_{\nu}, \quad L_5^{(2)} = (\phi^{\mu}\phi_{\mu\nu}\phi^{\nu})^2,$$
 and the cubic terms are given by

$$C^{\mu
u
ho\sigmalphaeta}_{(3)}\phi_{\mu
u}\phi_{
ho\sigma}\phi_{lphaeta}=\sum_{A=1}^{10}b_A(X,\phi)L_A^{(3)},$$

where

$$\begin{split} L_{1}^{(3)} &= (\Box \phi)^{3}, \quad L_{2}^{(3)} = (\Box \phi)\phi_{\mu\nu}\phi^{\mu\nu}, \quad L_{3}^{(3)} = \phi_{\mu\nu}\phi^{\nu\rho}\phi_{\rho}^{\mu}, \quad L_{4}^{(3)} = (\Box \phi)^{2}\phi_{\mu}\phi^{\mu\nu}\phi_{\nu}, \\ L_{5}^{(3)} &= \Box \phi\phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho}, \quad L_{6}^{(3)} = \phi_{\mu\nu}\phi^{\mu\nu}\phi_{\rho}\phi^{\rho\sigma}\phi_{\sigma}, \quad L_{7}^{(3)} = \phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho\sigma}\phi_{\sigma}, \\ L_{8}^{(3)} &= \phi_{\mu}\phi^{\mu\nu}\phi_{\nu\rho}\phi^{\rho}\phi_{\sigma}\phi^{\sigma\lambda}\phi_{\lambda}, \quad L_{9}^{(3)} = \Box \phi(\phi_{\mu}\phi^{\mu\nu}\phi_{\nu})^{2}, \quad L_{10}^{(3)} = (\phi_{\mu}\phi^{\mu\nu}\phi_{\nu})^{3}. \end{split}$$

The a_A and b_A are arbitrary functions of ϕ and X.

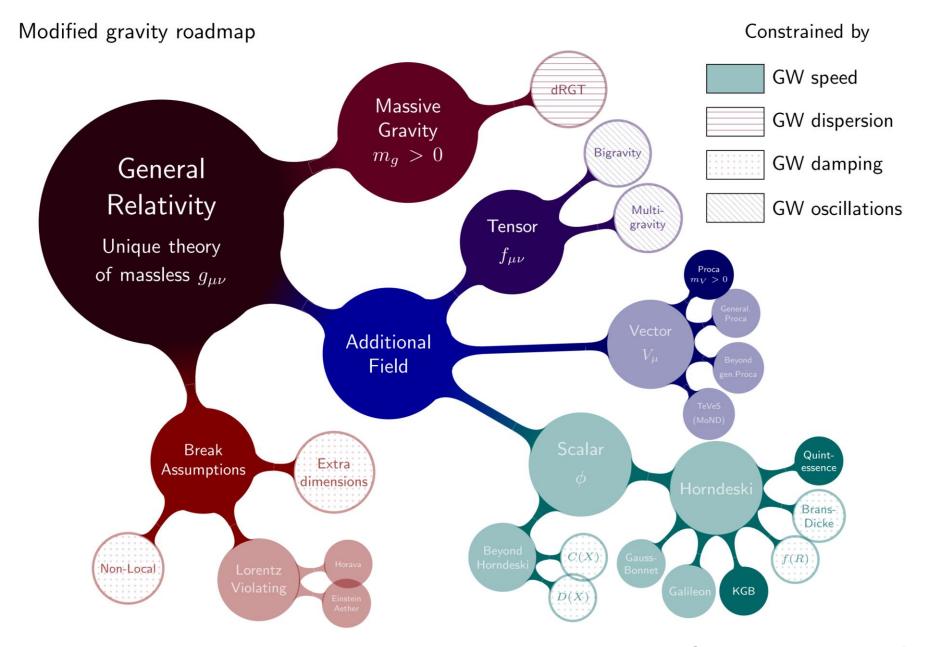


Figure from Ezquiaga, Miguel Zumalacarregui (2018)

See also Shinji's & Lavinia's & Filippo's talks on Monday

Considering a huge literature of exotic matter discussed in

inflationary cosmology, dark energy, etc,

wouldn't it make more sense to study exotic matter for superluminal travel?

"The Rise of Field Theory"

Outline:

- Motivation (√)
- Theory and Intuition
- Derivation of Bit Rate Bound
- Discussions

Theory and Intuition: The K-Essence Theory

K-essence:
$$\mathcal{L} = \mathcal{L}(X)$$
, $X = -\frac{1}{2}(\partial \phi)^2$

Sound speed:
$$c_s$$
: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$

Thus, if
$$\mathcal{L}_{XX} < 0$$
, $c_s > 1$.

Armendzriz-Picon, Damour, Mukhanov 1999,

Garriga, Mukhanov 1999,

Babichev, Mukhanov, Vikman 2007

Theory and Intuition: The K-Essence Theory

K-essence:
$$\mathcal{L} = \mathcal{L}(X)$$
, $X = -\frac{1}{2}(\partial \phi)^2$

Sound speed:
$$c_s$$
: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$

Thus, if $\mathcal{L}_{XX} < 0$, $c_s > 1$.

Armendzriz-Picon, Damour, Mukhanov 1999, Garriga, Mukhanov 1999,

Babichev, Mukhanov, Vikman 2007

Comment on the $\mathcal{L}_{XX} < 0$ branch:

- No CTC
- Positivity violation:

UV competition cannot be

local & analytical & unitary & Lorentz inv.

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 2006,

Shore 2007, c.f. Jackson 3rd Edition, Sec 7.10

See also Claudia's & Brando's talks yesterday.

Theory and Intuition: Superluminality and Non-Linearity

K-essence:
$$\mathcal{L} = \mathcal{L}(X)$$
, $X = -\frac{1}{2}(\partial \phi)^2$

Sound speed:
$$c_s$$
: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$

Thus, if
$$\mathcal{L}_{XX} < 0$$
 $c_s > 1$.

Non-linear for $\mathcal{L}_{XX} \neq 0$

Consider $\phi = \phi_0(t) + \varphi(\mathbf{x}, t)$

 2^{nd} order $\Rightarrow \dot{\phi}_0^2 \dot{\phi}^2 \Rightarrow c_s$

 $3^{\rm rd}$ order $\Rightarrow \dot{\phi}_0 \dot{\varphi}^3 \Rightarrow \varphi$ cannot be large

c.f. EFT of Inflation Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore 2007

Theory and Intuition: Superluminality and Non-Linearity

K-essence:
$$\mathcal{L} = \mathcal{L}(X)$$
, $X = -\frac{1}{2}(\partial \phi)^2$

Sound speed:
$$c_s$$
: $c_s^{-2} = 1 + 2X \frac{\mathcal{L}_{,XX}}{\mathcal{L}_{,X}}$

Thus, if $\mathcal{L}_{XX} < 0$ $c_s > 1$.

Non-linear for $\mathcal{L}_{XX} \neq 0$

Consider $\phi = \phi_0(t) + \varphi(\mathbf{x}, t)$

$$2^{\rm nd}$$
 order $\Rightarrow \dot{\phi}_0^2 \dot{\varphi}^2 \Rightarrow c_s$

 $3^{\rm rd}$ order $\Rightarrow \dot{\phi}_0 \dot{\varphi}^3 \Rightarrow \varphi$ cannot be large

For $c_s > 1$,

(bit rate) = (decreasing function of c_s)

Thus:

For low latency: $c_s > 1$ preferred

For high bit rate: $c_s \leq 1$ preferred

Outline:

- Motivation (√)
- Theory and Intuition (√)
- Derivation of Bit Rate Bound
- Discussions

$$\mathcal{L}(X) = \sum_{n=0}^{\infty} \frac{1}{n!} \partial_X^n \mathcal{L}(X_0) (X - X_0)^n$$

$$\mathcal{L}(X) = (\text{total derivatives}) + \mathcal{L}^{(2)} + \mathcal{L}_{\text{int}},$$

with

$$\mathcal{L}^{(2)} \equiv \frac{1}{2} \left[\left(c_1 + \frac{c_2 \dot{\phi}_0^2}{2\Lambda^4} \right) \dot{\varphi}^2 - c_1 (\nabla \varphi)^2 \right]$$

$$\mathcal{L}_{int} \equiv \left(\frac{c_2 \dot{\phi}_0}{2\Lambda^4} + \frac{c_3 \dot{\phi}_0^3}{6\Lambda^8} \right) \dot{\varphi}^3 - \frac{c_2 \dot{\phi}_0}{2\Lambda^4} \dot{\varphi} (\nabla \varphi)^2 + \cdots$$

Requiring $\mathcal{L}_{int} < \mathcal{L}^{(2)}$

- $\Rightarrow |\dot{\phi}| < \frac{\dot{\phi}_0}{2 \, c_s^2}$ (note: naively it would be $|\dot{\phi}| < \dot{\phi}_0$)
- \Rightarrow Constraint on stress tensor: $\left|T_{\mu\nu}^{(2)}\right| \sim c_s^{-1} \dot{\varphi}^2 < \frac{\dot{\varphi}_0^2}{c_s^5}$

$$\Rightarrow$$
 Constraint on stress tensor: $\left|T_{\mu\nu}^{(2)}\right| \sim c_s^{-1} \dot{\varphi}^2 < \frac{\dot{\varphi}_0^2}{c_s^5}$

How should this constraint be imposed?

- Locally (LC) on $\left|T_{\mu\nu}^{(2)}(\mathbf{x})\right|$: Pointwise in spacetime
- Globally (GC) on E(mode): Each mode is linear
- Averaged & Globally (AGC) on $\int d (\text{mode}) P (\text{mode}) E (\text{mode})$: An average mode is linear

Theoretically: LC and GC too strong, AGC more reasonable Operationally: AGC is simple to use (more later)

This is the classical constraint on information

Quantum mechanical: quanta

- Short wavelength: large energy per quanta

- Long wavelength: slowly varying, thus low bit rate

Model of semi-classical signal: coherent state

$$|z\rangle = \exp\left(-\frac{1}{2}\int_{\vec{k}}|z_{\vec{k}}|^2\right)\exp\left(\int_{\vec{k}}z_{\vec{k}}a_{\vec{k}}^{\dagger}\right)|0\rangle$$

Shannon entropy:

$$S[P] = -\int \mathcal{D}^2 \hat{z} P[\hat{z}] \ln P[\hat{z}] \quad \text{with} \quad \int \mathcal{D}^2 \hat{z} P[\hat{z}] = 1.$$

Area-density of energy:

$$E[\hat{z}] \equiv \frac{\langle z|H^{(2)}|z\rangle}{L_y L_z} = \int \frac{dk}{2\pi} \omega_k |\hat{z}_k|^2$$

AGC:

$$\int \mathcal{D}^2 \hat{z} P[\hat{z}] E[\hat{z}] \lesssim \varepsilon_{\max} L_x \qquad \qquad \varepsilon_{\max} \sim \frac{\dot{\phi}_0^2}{c_s^6} \ \ \text{(maximal energy density)}$$

Model of semi-classical signal: coherent state

$$|z_{\vec{k}}|^2 \exp\left(\int_{\vec{k}} z_{\vec{k}} a_{\vec{k}}^{\dagger}\right) |0\rangle$$

The quantity to maximize

$$S[P] = -\int \mathcal{D}^2 \hat{z} P[\hat{z}] \ln P[\hat{z}] \quad \text{with} \quad \int \mathcal{D}^2 \hat{z} P[\hat{z}] = 1.$$

Area-density of energy:

$$E[\hat{z}] \equiv \frac{\langle z|H^{(2)}|z\rangle}{L_y L_z} = \int \frac{dk}{2\pi} \omega_k |\hat{z}_k|^2$$

constraints

AGC:

$$\int \mathcal{D}^2 \hat{z} P[\hat{z}] E[\hat{z}] \lesssim \varepsilon_{\text{max}} L_x$$

Using methods in statistical physics:

$$0 = \delta \left(S[P] - (\alpha - 1) \int \mathcal{D}^2 \hat{z} P - \beta \int \mathcal{D}^2 \hat{z} P E \right)$$

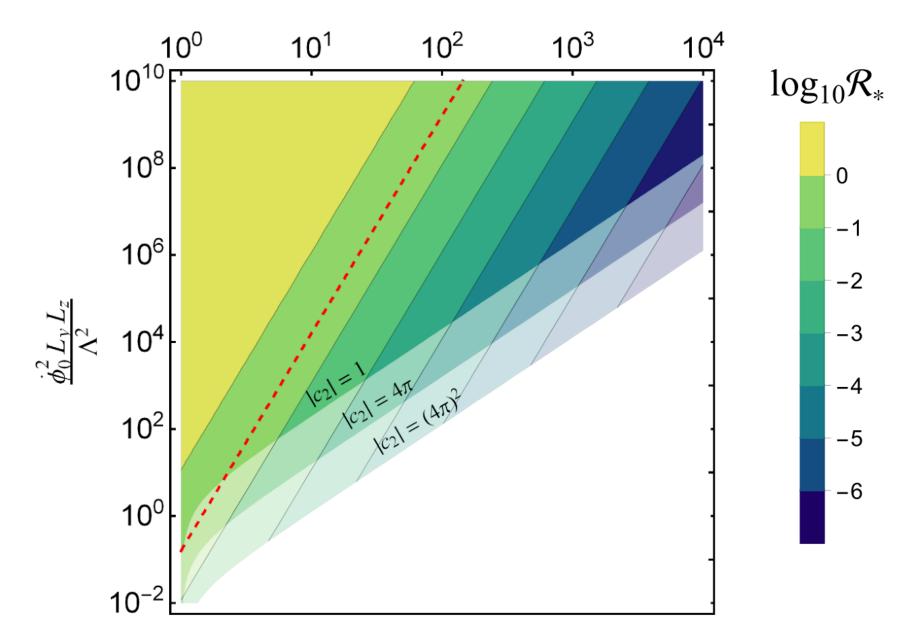
$$P_* = e^{-\alpha - \beta E}$$

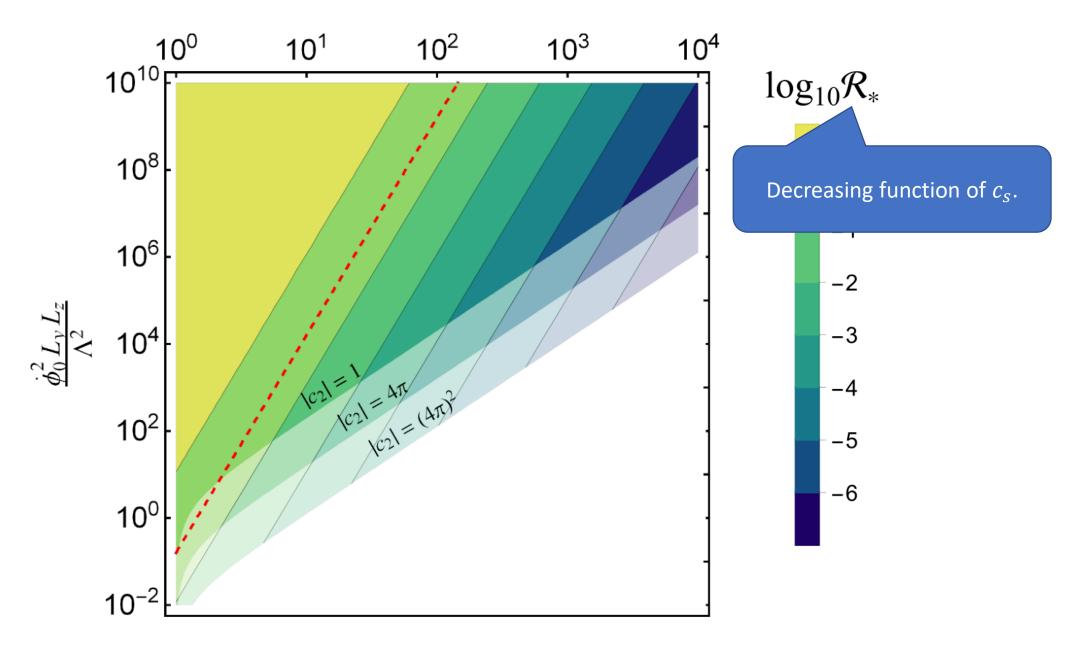
AGC bit rate bound:

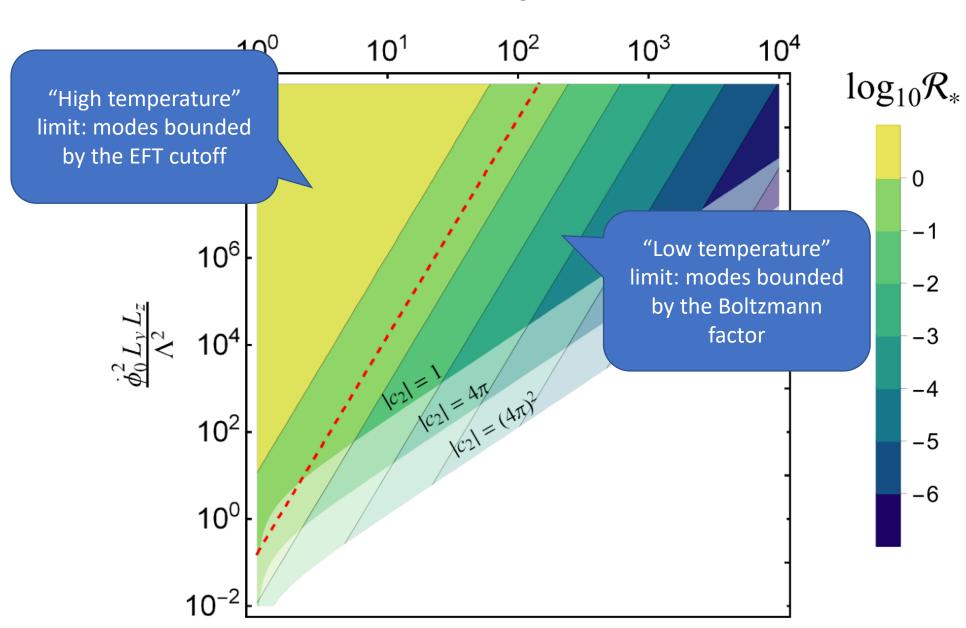
$$R_* = \frac{c_s S_*}{L_r} \equiv \Lambda \mathcal{R}_*$$

where γ is the solution to

$$\frac{1}{\gamma^2} \int_0^{\gamma} dx \frac{1+x}{1+xe^x} = \frac{2\pi \dot{\phi}_0^2 L_y L_z}{c_s^5 \Lambda^2} .$$







"Low temperature" limit: $\frac{\dot{\phi}_0^2 L_y L_z}{\Lambda^2} \ll \frac{c_s^5}{2\pi}$

$$R_* \approx \left(\frac{2.64}{\pi}\dot{\phi}_0^2 L_y L_z\right)^{1/2} c_s^{-5/2}$$

"High temperature" limit: $\frac{\dot{\phi}_0^2 L_y L_z}{\Lambda^2} \gg \frac{c_s^5}{2\pi}$

$$R_* \approx \frac{\Lambda}{2\pi} \ln \frac{2\pi \dot{\phi}_0^2 L_y L_z}{c_s^5 \Lambda^2}$$

Outline:

- Motivation (√)
- Theory and Intuition (√)
- Derivation of Bit Rate Bound (√)
- Discussions

Conclusion:

- Superluminal ⇒ nonlinearity
- Nonlinearity ⇒ energy density bound, AGC
- + quantization ⇒ bit rate bound

Discussions:

- SM constraints on Lorentz-violating sectors?
- More general scalar-tensor theories or higher-dim EFT operators?
- More information theory justifications of AGC?
- Other superluminal mechanisms, say, extra-dim?
- Semi-classical. Go fully quantum?

Thank Vous

Appendix: Energy Conditions

Energ	y Condition	Definition	Eigenvalues $\widehat{T}_{\mu u} = \operatorname{diag} \left\{ ho, p, p, p \right\}$ [3]	Implies
WEC	(weak)	$T_{\mu\nu}V^{\mu}V^{\nu} \ge 0 [1]$	$ \rho \ge 0, \rho + p_i \ge 0 $	NEC
DEC	(dominant)	WEC & $T_{\mu u} V^{ u}$ not spacelike [2]	$ \rho \ge 0, -\rho \le p_i \le \rho $	WEC, NEC
SEC	(strong)	$(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T)V^{\mu}V^{\nu} \ge 0$	$\rho + p_i \ge 0, \rho + \sum_i p_i \ge 0$	NEC
NEC	(null)	$T_{\mu\nu}L^{\mu}L^{\nu} \ge 0$	$ \rho + p_i \ge 0 $	

Remarks:

- [1] By continuity, this also implies $T_{\mu\nu}L^{\mu}L^{\nu} \geq 0$.
- [2] Equivalent definition: For orthonormal basis, $T^{00} \ge |T^{\mu\nu}|$.
- [3] See Hawking & Ellis for other classes of $T_{\mu\nu}$.

Notations: V^{μ} , W^{μ} are general time-like vectors; L^{μ} is a general null vector; $\mu = 0, 1, 2, 3$ and i = 1, 2, 3.