Lorentzian Vacuum Transitions

UK Research and Innovation

(*) CAMBRIDGE
EPSRC

Francesco Muia
Cosmology 2021 05/01/2021

[S. de Alwis, S. Cespedes, F. Muia, F. Quevedo, 2020]

[S. de Alwis, F. Muia, V. Pasquarella, F. Quevedo, 2019]

The problem

$$
\frac{\rho_{\mathrm{vac}}(\text { theory })}{\rho_{\mathrm{vac}}(\text { observed })} \simeq\left(\frac{10^{19} \mathbf{G e V}}{10^{-3} \mathbf{e V}}\right)^{4} \approx 10^{122}
$$

Anthropic selection

1. Microscopic theory provides a huge number of vacua, i.e. a Landscape.
2. Different regions of the universe sit in different vacua, and they are all populated.
3. Observers can only exist for a small range of vacuum energies.
"Worst solution to the CC problem, except for all the others."

The problem

$$
\frac{\rho_{\text {vac }}(\text { theory })}{\rho_{\text {vac }}(\text { observed })} \simeq\left(\frac{10^{19} \mathbf{G e V}}{10^{-3} \mathbf{e V}}\right)^{4} \approx 10^{122}
$$

Anthropic selection

1. Microscopic theory provides a huge number of vacua, i.e. a Landscape.
2. Different regions of the universe sit in different vacua, and they are all populated.
3. Observers can only exist for a small range of vacuum energies.
"Worst solution to the CC problem, except for all the others."

Populating the String Landscape

Fate of tse false vacuum: Semiclassical theory*

Sidney Coleman

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 24 January 1977)
It is possible for a classical field theory to have two homogeneous stable equilibrium states with different energy densities. In the quantum version of the theory, the state of higher energy density becomes unstable through barrier penetration; it is a false vacuum. This is the first of two papers developing the qualitative and quantitative semiclassical theory of the decay of such a false vacuum for theories of a single scalar field with nonderivative interactions. In the limit of vanishing energy density between the two ground states, it is possible to obtain explicit expressions for the relevant quantities to leading order in h; in the more general case, the problem can be reduced to solving a single nonlinear ordinary differential equation.

Gravitational effects on and of vacuum decay

Sidney Coleman*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

Frank De Luccia
Institute for Advanced Study, Princeton, New Jersey 88548
(Received 4 March 1980)
It is possible for a classical field theory to have two stable homogeneous ground states, only one of which is an absolute energy minimum. In the quantum version of the theory, the ground state of higher energy is a false vacuum, rendered unstable by barrier penetration. There exists a well-established semiclassical theory of the decay of such false vacuums. In this paper, we extend this theory to include the effects of gravitation. Contrary to naive expectation, these are not always negligible, and may sometimes be of critical importance, especially in the late stages of the decay process.

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80] CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80]
CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

- Run-away decompactification? [Aguirre, Johnsons, Larfors, '09, '10]

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80]
CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

- Run-away decompactification?

[Aguirre, Johnsons, Larfors, '09, '10]
- Is it possible to up-tunnel from dS? [Lee, Weinberg, '87]

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80]
CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

- Run-away decompactification?

[Aguirre, Johnsons, Larfors, '09, '10]
- Is it possible to up-tunnel from dS? [Lee, Weinberg, '87]
- Is up-tunnelling from 4D Minkowski possible?

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80]
CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

- Run-away decompactification?

[Aguirre, Johnsons, Larfors, '09, '10]
- Is it possible to up-tunnel from dS? [Lee, Weinberg, '87]
- Is up-tunnelling from 4D Minkowski possible?
- Spontaneous Compactification from 10D Minkowski Vacuum of ST.

Motivations

- Populating the String Landscape.
- How is it populated?

Eternal inflation is not enough.
[Coleman, De Luccia, '80]
CDL
[Brown, Teitelboim, '88] BT
[Farhi, Guth, Guven, '89] FGG
[Fischler, Morgan, Polchinski, '90] FMP

- Run-away decompactification?

[Aguirre, Johnsons, Larfors, '09, '10]
- Is it possible to up-tunnel from dS? [Lee, Weinberg, '87]
- Is up-tunnelling from 4D Minkowski possible?
- Spontaneous Compactification from 10D Minkowski Vacuum of ST.
- Validity of Coleman-De Luccia.

WKB Approximation

- Schrödinger equation

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right) \psi(t, x)=i \hbar \frac{\partial}{\partial t} \psi(t, x)
$$

- Ansatz: $\psi(t, x)=e^{i S(x, t) / \hbar}$

$$
-\frac{\partial S}{\partial t} \psi=\left(\frac{\left(S^{\prime}\right)^{2}}{2 m}-\frac{i \hbar}{2 m} S^{\prime \prime}+V\right) \psi
$$

- Semiclassical expansion

$$
\begin{aligned}
& S(x, t)=S_{0}(x, t)+\hbar S_{1}(x, t)+\hbar^{2} S_{2}(x, t)+\ldots \\
& -\frac{\partial S_{0}}{\partial t}=\frac{\left(S_{0}^{\prime}\right)^{2}}{2 m}+V \quad \text { Hamilton-Jacobi equation } \\
& -\frac{\partial S_{1}}{\partial t}=\frac{1}{2 m}\left(-i S_{0}^{\prime \prime}+2 S_{0}^{\prime} S_{1}^{\prime}\right)
\end{aligned}
$$

WKB Approximation

- Energy eigenstates: $\psi(x) \propto e^{-i E t / \hbar} \longrightarrow S_{0}(x, t)=S_{0}(x)-E t$

$$
E=\frac{\left(S_{0}^{\prime}\right)^{2}}{2 m}+V
$$

$$
S_{0}(x)=\eta \int^{x} d x^{\prime} \sqrt{2 m\left(E-V\left(x^{\prime}\right)\right)} \equiv \eta \int^{x} p\left(x^{\prime}\right) d x^{\prime}
$$

- Always two solutions: $\eta= \pm$.
- In the under the barrier region:

$$
\begin{gathered}
E-V(x)<0 \quad \longrightarrow \quad S_{0} \text { is imaginary } \\
1 / \tau \equiv \Gamma=A e^{-B} \quad \begin{array}{l}
\text { [Coleman, '77] } \\
\text { [Andreassen, Farhi, Frost, Schwartz, '16] }
\end{array} \\
B=i S_{0}=2 i \int_{x_{1}}^{x_{2}} d x^{\prime} \sqrt{2 m\left(V\left(x^{\prime}\right)-E\right)}
\end{gathered}
$$

Decay of a Metastable State in QM

- Imaginary $p \sim \dot{x} \quad \Leftrightarrow \quad t \rightarrow-i \tau$ WKB result is equivalent to the Euclidean action evaluated on the bounce

$$
\begin{gathered}
S_{E}=\int d \tau\left(\frac{m}{2} \dot{x}^{2}+V\right) \quad \mathscr{E}=0=\frac{m}{2} \dot{x}^{2}-V \\
S_{E}\left(x_{b}\right)=\int_{-\infty}^{\infty} d \tau\left(\frac{m}{2} \dot{x}_{b}^{2}+V\left(x_{b}\right)\right)=2 \int_{-\infty}^{0} d \tau 2 V\left(x_{b}\right)=B \quad d \tau=\sqrt{\frac{m}{2 V\left(x_{b}\right)}} d x_{b}
\end{gathered}
$$

- If $S_{E}\left(x_{1}\right) \neq 0$, then $B=S_{E}-S_{E}\left(x_{1}\right)$.
$S_{E}\left(x_{1}\right) \equiv$ background

Quantum Field Theory

- Scalar field theory $\quad V=\int d^{4} x\left(-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right)$
infinite dimensional space of field configurations
- The corresponding potential energy is $\quad U[\varphi(x)]=\int d^{3} x\left(\frac{1}{2}(\nabla \varphi)^{2}+V(\varphi)\right)$
homogeneous tunnelling would correspond to go beyond an infinitely high barrier

Quantum Field Theory

- Scalar field theory $\quad V=\int d^{4} x\left(-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right)$
infinite dimensional space of field configurations
- The corresponding potential energy is $\quad U[\varphi(x)]=\int d^{3} x\left(\frac{1}{2}(\nabla \varphi)^{2}+V(\varphi)\right)$
homogeneous tunnelling would correspond to go beyond an infinitely high barrier

tunnelling is possible only locally

- Infinite many ways of intepolating
\longrightarrow bounce minimizes the integral of U

Quantum Field Theory

- Scalar field theory $\quad V=\int d^{4} x\left(-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi-V(\varphi)\right)$
infinite dimensional space of field configurations
- The corresponding potential energy is $\quad U[\varphi(x)]=\int d^{3} x\left(\frac{1}{2}(\nabla \varphi)^{2}+V(\varphi)\right)$
homogeneous tunnelling would correspond to go beyond an infinitely high barrier
tunnelling is possible only locally
- Infinite many ways of intepolating
\longrightarrow bounce minimizes the integral of U
- Quantum tunnelling conserves energy
\longrightarrow up-tunnelling is forbidden

Tunnelling in Flat Space

- The bounce with the lowest action has $S O(4)$ symmetry.

$$
\rho=\sqrt{\tau^{2}+x^{2}} \quad \varphi^{\prime \prime}+\frac{3}{\rho} \varphi^{\prime}-\frac{d V}{d \varphi}=0
$$

classical particle with friction in inverted potential

	$\varphi_{b}(0)=\varphi_{T V}$	this solution always exists
BCs:	$\varphi_{b}(\infty)=\varphi_{F V}$	(overshoot/undershoot
	$\varphi_{b}^{\prime}(0)=0$	argument)

Euclidean space

Tunnelling in Flat Space

- The bounce with the lowest action has $S O(4)$ symmetry.

$$
\rho=\sqrt{\tau^{2}+x^{2}} \quad \varphi^{\prime \prime}+\frac{3}{\rho} \varphi^{\prime}-\frac{d V}{d \varphi}=0
$$

classical particle with friction in inverted potential

$$
\begin{array}{ll|c}
& \varphi_{b}(0)=\varphi_{T V} & \text { this solution always exists } \\
\text { BCs: } & \varphi_{b}(\infty)=\varphi_{F V} & \text { (overshoot/undershoot } \\
& \varphi_{b}^{\prime}(0)=0 & \text { argument) }
\end{array}
$$

Euclidean space

- If pressure wins, the bubble expands.
- Evolution of the bubble after nucleation

$$
\begin{aligned}
\rho & =\sqrt{|x|^{2}+\tau^{2}} \xrightarrow{\tau \rightarrow i t} r=\sqrt{|x|^{2}-t^{2}} \\
\varphi_{E} & =f(x, \tau) \rightarrow \varphi_{M}=f(x, i t) \text { at }|x|^{2}>t^{2}
\end{aligned}
$$

Tunnelling in Flat Space

- The bounce with the lowest action has $S O(4)$ symmetry.

$$
\rho=\sqrt{\tau^{2}+x^{2}} \quad \varphi^{\prime \prime}+\frac{3}{\rho} \varphi^{\prime}-\frac{d V}{d \varphi}=0
$$

classical particle with friction in inverted potential

	$\varphi_{b}(0)=\varphi_{T V}$	this solution always exists
BCs:	$\varphi_{b}(\infty)=\varphi_{F V}$	(overshoot/undershoot
	$\varphi_{b}^{\prime}(0)=0$	argument)

- If pressure wins, the bubble expands.
- Evolution of the bubble after nucleation

$$
\begin{aligned}
\rho & =\sqrt{|x|^{2}+\tau^{2}} \quad \stackrel{\tau \rightarrow i t}{\longrightarrow} r=\sqrt{|x|^{2}-t^{2}} \\
\varphi_{E} & =f(x, \tau) \longrightarrow \varphi_{M}=f(x, i t) \text { at }|x|^{2}>t^{2}
\end{aligned}
$$

Coleman-De Luccia

- Including gravity?
- Scales close to the Planck mass.
- Radius of the bubble comparable to the horizon.
- Spacetime and topology change.
[Israel, '67]
- Need to patch different spacetimes together \longrightarrow Junction conditions

- Pill-box integration of the Einstein equations

$$
\lim _{\epsilon \rightarrow 0}\left[\int_{-\epsilon}^{\epsilon} G_{\beta}^{\alpha} d n\right]=8 \pi S_{\beta}^{\alpha} \longrightarrow \begin{aligned}
& S_{n}^{n}=0 \\
& S_{n}^{\alpha}=0
\end{aligned} \left\lvert\, \begin{gathered}
\text { no momentum associated with the } \\
S_{\beta}^{\alpha}=\Delta K_{\beta}^{\alpha}-\Delta K \delta_{\beta}^{\alpha} \longrightarrow K_{\alpha \beta}=\text { extrinsic curvature flows out of }
\end{gathered}\right.
$$

Israel junction conditions

CDL: de Sitter to de Sitter

$$
\rho_{-}^{\prime}>0 \quad \rho_{+}^{\prime}<0
$$

> Assume that the most relevant configuration is SO(4) symmetric

$$
\begin{aligned}
& \kappa=4 \pi G \sigma \\
& \hat{\rho} \equiv \text { position of the wall }
\end{aligned}
$$

$$
B= \pm 8 \pi^{2}\left[\frac{\left[\left(H_{A}^{2}-H_{B}^{2}\right)^{2}+\kappa^{2}\left(H_{A}^{2}+H_{B}^{2}\right)\right] \hat{\rho}}{4 \kappa H_{A}^{2} H_{B}^{2}}-\frac{1}{2}\left(\frac{1}{H_{B}^{2}}-\frac{1}{H_{A}^{2}}\right)\right]
$$

$$
\hat{\rho}^{2}=\frac{4 \kappa^{2}}{\left(H_{O}^{2}-H_{I}^{2}\right)^{2}+2 \kappa^{2}\left(H_{O}^{2}+H_{I}^{2}\right)+\kappa^{4}}
$$

CDL: de Sitter to de Sitter

$$
\rho_{-}^{\prime}>0 \quad \rho_{+}^{\prime}<0
$$

> Assume that the most relevant configuration is SO(4) symmetric

$$
\begin{aligned}
& \kappa=4 \pi G \sigma \\
& \hat{\rho} \equiv \text { position of the wall }
\end{aligned}
$$

$$
B= \pm 8 \pi^{2}\left[\frac{\left[\left(H_{A}^{2}-H_{B}^{2}\right)^{2}+\kappa^{2}\left(H_{A}^{2}+H_{B}^{2}\right)\right] \hat{\rho}}{4 \kappa H_{A}^{2} H_{B}^{2}}-\frac{1}{2}\left(\frac{1}{H_{B}^{2}}-\frac{1}{H_{A}^{2}}\right)\right]
$$

$$
\lim _{H_{B} \rightarrow 0} B=\infty \quad \longrightarrow \quad \mathrm{P} \sim e^{-B} \rightarrow 0
$$

up-tunnelling from Minkowski is forbidden

CDL: Penrose Diagram

- $\operatorname{SO}(4)$ symmetry $d s^{2}=a^{2}(\xi)\left(d \xi^{2}+d \Omega_{3}^{2}\right)$

$$
d \Omega_{3}^{2}=d \theta^{2}+\sin ^{2} \theta d \Omega_{2}^{2}
$$

Scalar field only depends on ξ

- Analytic continuation of θ

$$
\begin{gathered}
\theta \rightarrow \frac{\pi}{2}+i t \\
d s^{2}=a^{2}(\xi)\left(d \xi^{2}-\frac{\left.d t^{2}+\cosh ^{2} t d \Omega_{2}^{2}\right)}{d S_{3}}\right.
\end{gathered}
$$

nucleation

- $S O(1,3)$ symmetry.
- Describe orange diamond: it's not geodesically complete.
- Black lines denote constant ξ surfaces.
- Analytic continuation

$$
\underset{\theta \rightarrow i \rho}{\xi \rightarrow T+i \frac{\pi}{2}} \longrightarrow \quad \longrightarrow s^{2}=a^{2}(T)(-d T^{2}+\underbrace{\left.d \rho^{2}+\sinh ^{2} \rho d \Omega_{2}^{2}\right)}_{d H_{3}}
$$

- Describe upper left triangle.
- Green lines denote constant T, open slices.

CDL: Open Universe

- Open slices $\longrightarrow \begin{gathered}\text { constant } \\ \text { scalar field }\end{gathered}$

Observer on the west pole observes an open universe

[Freivogel, Kleban, Martinez, Susskind, '06, '14] [Batra, Kleban, '07] [Kleban, Schillo, '12]

Observation of closed universe rules out the landscape and/or string theory?

Euclidean Techniques: Issues

- Is Coleman-De Luccia reliable in all cases and for all implications?
[Blanco-Pillado, Deng, Vilenkin, '19]
[11]. It should be noted, however, that while Coleman's flat space calculation was solidly based on first principles, the CdL formula (1) was proposed in [8] essentially by analogy with the flat space case, so its validity is open to question.
- $S O(4)$ symmetry \longrightarrow is open universe a general consequence of tunnelling?
- Minkowski to de Sitter up-tunnelling is not possible.
[Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker, '06]
- More general solutions using Euclidean techniques, e.g. Schwarzschild to de Sitter? [Farhi, Guth, Guven, '89]
[Guth's talk at string cosmology in '04]
Problem: The equal-time surface evolves in Euclidean space in a circular pattern, crossing itself and recovering some of the same spacetime points. The multiple coverings are not consistent. The Euclidean solution is not a manifold.
- Negative mode problem. [Lavrelashvili, Rubakov, Tinyakov, '85]

Hamiltonian Formalism for Tunnelling

- Wheeler-DeWitt equation: $\mathscr{H} \Psi(\Phi)=\left[-\frac{\hbar^{2}}{2} G^{M N}(\Phi) \nabla_{M} \nabla_{N}+f(\Phi)\right] \Psi(\Phi)=0 \quad \begin{aligned} & \text { on a fixed } \\ & \left.\text { [DeWitt, }{ }^{6} 67\right]\end{aligned}$
- Semiclassical expansion: $\Psi(\Phi)=\exp \left(\frac{i}{\hbar} S\right) \longrightarrow S[\Phi]=S_{0}[\Phi]+\hbar S_{1}[\Phi]+\hbar^{2} S_{2}[\Phi]+\ldots$
- Hamilton-Jacobi:

$$
\frac{1}{2} G^{M N} \frac{\delta S_{0}}{\delta \Phi^{M}} \frac{\delta S_{0}}{\delta \Phi^{N}}+f(\Phi)=0
$$

- Action:

$$
S_{0}(\Phi(s))=\int^{\Phi(s)} \int d^{3} x \pi_{M} d \Phi^{M}
$$

- We compute $S_{0}[\Phi(s)]-S_{0}[\Phi(0)]$

$$
P=\frac{\mid\left.\Psi(\text { nucleated })\right|^{2}}{\mid\left.\Psi(\text { background })\right|^{2}}
$$

background
compare wave functions of different spacetime configurations

Vilenkin vs Hartle-Hawking

- Minisuperspace: $\quad d s^{2}=\ell^{2}\left(-d \tau^{2}+a^{2}(\tau) d \Omega_{3}^{2}\right) \quad \longrightarrow$ scale factor determines the metric
- Hamiltonian: $\quad \mathscr{H}=\frac{p_{a}^{2}}{12 a}+\underbrace{3 a-3 a^{3} H^{2}}_{f(a)}$
- WDW:

$$
\left[\frac{d^{2}}{d a^{2}}-f(a)\right] \Psi(a)=0 \quad p_{a} \rightarrow-i \frac{\partial}{\partial a}
$$

- Action:

$$
S_{0}=\eta 2 \pi^{2} \int_{0}^{a} p_{a} d a=i \eta 12 \pi^{2} \int_{0}^{a} d a a \sqrt{1-a^{2} H^{2}}
$$

$$
\Psi=c_{1} e^{i S_{0}}+c_{2} e^{-i S_{0}}
$$

tunnelling from "nothing"
wave function

- Boundary conditions fix constants

Hartle-Hawking wave function requires $\Psi(0)=0 \quad \longrightarrow \quad \eta=+$
Vilenkin wave function requires only outgoing wave at $a \gg 1 / H \quad \longrightarrow \quad \eta=-$

Summary of dS to dS Transitions

Transitions à la BT

thin-wall approximation

Transitions in minisuperspace

Dynamics of dS-dS Bubbles

Bubble trajectory for string landscape transitions

$$
\dot{\hat{R}}^{2}+V_{\mathrm{eff}}=-1
$$

Bubble trajectory

$$
\begin{gathered}
\cos \hat{r}=\sqrt{1-H^{2} R_{0}^{2}} \cos T \\
R_{0}=H^{-1} \sin \hat{r}
\end{gathered}
$$

- No reference to $S O(4)$ symmetry.
- Recover $S O(3,1)$ symmetry.

$$
\begin{gathered}
\text { wall at } X_{1}=\text { const. } \\
-X_{0}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}=R_{0}^{2}
\end{gathered}
$$

- Asymptotic speed smaller than c.

de Sitter to de Sitter

[Fischler, Morgan, Polchinski, '90]
[de Alwis, Muia, Pasquarella, Quevedo, '19]

- General $S O(3)$ symmetric solutions:
$d s^{2}=-d t^{2}+L^{2}(t, r) d r^{2}+R^{2}(t, r) d \Omega_{2}^{2}$
- Action: $\quad \delta S=\int d r \underbrace{\left[\pi_{L} \delta L+\pi_{R} \delta R\right.}_{\text {bulk }}+\hat{p} \delta \delta \underbrace{}_{\text {wall }}$

$S O(3)$ symmetry is preserved all the way through

The wall breaks $S O(4)$

de Sitter to de Sitter

$$
\begin{gathered}
2 i S_{\text {tot }}=B_{\text {tot }}=B_{B}+B_{w} \\
\frac{B_{B}}{2}=\frac{\eta}{G} \int_{0}^{\hat{r}-\epsilon} d r R\left[\sqrt{A_{I} L^{2}-R^{2}}-R^{\prime} \arccos \left(\frac{R^{\prime}}{L \sqrt{A_{I}}}\right)\right]+\int_{\hat{r}+\epsilon}^{\pi}[I \leftrightarrow O] \\
\frac{B_{w}}{2}=\left.\frac{\eta}{G} \int d \hat{R} \hat{R} \arccos \left(\frac{R^{\prime}}{L \sqrt{\hat{A}}}\right)\right|_{\hat{r}-\epsilon} ^{\hat{\hat{r}+\epsilon}} \\
R_{0}^{2}=\frac{B_{\text {tot }}}{\left(H_{O}^{2}-H_{I}^{2}\right)^{2}+2 \kappa^{2}\left(H_{O}^{2}+H_{I}^{2}\right)+\kappa^{4}} \\
\frac{\eta \pi}{G}\left[\frac{\left(H_{O}^{2}-H_{I}^{2}\right)^{2}+\kappa^{2}\left(H_{O}^{2}+H_{I}^{2}\right) R_{0}^{2}}{8 \kappa H_{O}^{2} H_{I}^{2}}\right]-\frac{1}{4 H_{I}^{2}}-\frac{1}{4 H_{O}^{2}}
\end{gathered}
$$

Symmetric under the exchange $I \leftrightarrow O$

Background subtraction breaks the symmetry

give the same result

Subtract Hartle-Hawking/Vilenkin wave function $\frac{\bar{B}}{2}=\frac{\eta \pi}{2 G H_{O}^{2}}$

de Sitter to de Sitter

- The result is in agreement with CDL's final result, for $\eta=+1$.

$$
\mathrm{P}\left(d S_{O} \rightarrow d S_{O} / d S_{I} \oplus W\right) \equiv \frac{|\Psi(\square)|^{2}}{|\Psi(\square)|^{2}}=\exp \left(-\eta B_{\mathrm{CDL}}\right)
$$

- Limit Minkowski to de Sitter: $H_{O} \rightarrow 0$.

$$
\begin{aligned}
& |\Psi(\square)|^{2} \longrightarrow \frac{\eta \pi}{2 G} \frac{H_{I}^{2}+2 \kappa^{2}}{\left(H_{I}^{2}+\kappa^{2}\right)^{2}} \quad \text { finite } \mid \\
& |\Psi(\square)|^{2} \simeq e^{\frac{\pi}{G H^{2}}} \longrightarrow \infty \quad \text { blows-up } \mid
\end{aligned}
$$

Dynamics of S-dS Bubbles

- dS to dS transitions as 'tunnelling from nothing'.
- In general S-dS transitions initial state is not 'nothing'.

tunnelling from 'nothing'

Dynamics of S-dS Bubbles

- dS to dS transitions as 'tunnelling from nothing'.
- In general S-dS transitions initial state is not 'nothing'.
[Farhi, Guth, Guven, '89]
[Fischler, Morgan, Polchinski, '90]

tunnelling from 'nothing'

Minkowski to de Sitter

- Mass of the bubble:
$M=\frac{H^{2} R^{3}}{2 G}+4 \pi \sigma R^{2} \operatorname{sign}\left(R_{-}^{\prime}\right)\left(1+\dot{R}^{2}\right)^{1 / 2}-2 \pi \sigma H^{2} R^{4} \operatorname{sign}\left(R_{-}^{\prime}\right)-8 \pi^{2} G \sigma^{2} R^{3}$

Minkowski to de Sitter

- Mass of the bubble:
$M=\frac{H^{2} R^{3}}{2 G}+4 \pi \sigma R^{2} \operatorname{sign}\left(R_{-}^{\prime}\right)\left(1+\dot{R}^{2}\right)^{1 / 2}-2 \pi \sigma H^{2} R^{4} \operatorname{sign}\left(R_{-}^{\prime}\right)-8 \pi^{2} G \sigma^{2} R^{3}$
\longrightarrow recover tunnelling from 'nothing' for $M \rightarrow 0$
Note: Minkowski does not decay completely.
\longrightarrow de Sitter as a resonance? [Maltz, Susskind, '17]

- Action $\frac{B_{\text {tot }}}{2}=\frac{\eta \pi}{2 G} \frac{H^{2}+2 \kappa^{2}}{\left(H^{2}+\kappa^{2}\right)^{2}} \quad \bar{B}=0$

$$
\mathrm{P}(M \rightarrow M / d S \oplus W) \equiv \frac{|\Psi(\backsim)|^{2}}{|\Psi(\square)|^{2}}=\exp \left[\frac{\eta \pi}{G H^{2}}\left(1-\frac{\kappa^{4}}{\left(H^{2}+\kappa^{2}\right)^{2}}\right)\right]
$$

observations

$$
\Psi=a e^{B}+b e^{-B}
$$

- Hartle-Hawking wave function always dominates at the turning point, unless the coefficient a is set to 0 imposing some boundary conditions.
- Detailed balance works with $\eta=+1$
- Take two dS spacetimes A and B

$$
\begin{aligned}
& \mathrm{P}(B \rightarrow B / A \oplus W)=\frac{|\Psi(B / A \oplus W)|^{2}}{|\Psi(B)|^{2}}=\frac{|\Psi(A / B \oplus W)|^{2}}{|\Psi(B)|^{2}} \\
& \longrightarrow \frac{\mathrm{P}(A \rightarrow A / B \oplus W)}{\mathrm{P}(B \rightarrow B / A \oplus W)}=\frac{|\Psi(B)|^{2}}{|\Psi(A)|^{2}} \approx \frac{e^{s_{B}}}{e^{s_{A}}} \\
& \eta=+1 \\
& \text { owski to de Sitter case } \quad \frac{\mathrm{P}(M \rightarrow M / d S \oplus W)}{\mathrm{P}(d S \rightarrow d S / M \oplus W)} \stackrel{\uparrow}{=} e^{s_{d S}}
\end{aligned}
$$

- In the Minkowski to de Sitter case

Open or Closed Universe?

- Landscape transitions: closed universe?

- Open question: how does the picture change when matter is added?

Minisuperspace transitions

- Minisuperspace: $\quad d s^{2}=\ell^{2}\left(-d \tau^{2}+a^{2}(\tau) d \Omega_{3}^{2}\right) \quad \longrightarrow \quad$ no wall SO(4) symmetry
- dS \longrightarrow 'nothing' \longrightarrow dS $\quad B=24 \pi^{2}\left(\mp \frac{1}{V_{B}} \pm \frac{1}{V_{A}}\right)$
contribution larger than CDL

Minisuperspace transitions

- Minisuperspace: $d s^{2}=\ell^{2}\left(-d \tau^{2}+a^{2}(\tau) d \Omega_{3}^{2}\right) \quad \longrightarrow$ no wall SO(4) symmetry
- dS \longrightarrow 'nothing' $\longrightarrow \mathrm{dS} \quad B=24 \pi^{2}\left(\mp \frac{1}{V_{B}} \pm \frac{1}{V_{A}}\right)$
contribution larger than CDL
- Standard classical path, eg. fly-over. $\quad \longrightarrow \quad$ kinetic energy $>\Delta V$ [Blanco-Pillado, Deng, Vilenkin, '19]

Minisuperspace transitions

- Contracting universe: $\dot{H}=-4 \pi G(\rho+p)+\frac{k}{a^{2}}$

At bounce $\dot{H}>0 \quad \longrightarrow$ if $k \leq 0$ need $\rho<-p \quad \longrightarrow \quad$ phantom matter
Phantom matter not required if $k>0$

- Friedman equation: $\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3}\left(\frac{\dot{\phi}^{2}}{2}+V\right)-\frac{1}{a^{2}} \longrightarrow \begin{gathered}\text { smaller kinetic energy } \\ \text { needed to overcome } \\ \text { the barrier }\end{gathered}$
[Starobinski, '78] [Güngör, Starkman, '20]
- Non-standard classical path. \longrightarrow kinetic energy $<\Delta V$, initially contracting universe

Conclusions

- Main points:
- We have tried to recover de Sitter to de Sitter transitions from a purely Lorentzian computation.
- The final result agrees with CDL, but there are subtleties to be understood.
- In this formalism Minkowski to de Sitter transitions are allowed, in the limit of vanishing black hole mass, while are not allowed in the limit of vanishing cosmological constant.
- We find that for BT transitions the open Universe is not compelling. How the result changes if matter is added is an open question.
- We observed non-standard classical transitions with an initially contracting Universe that need further investigation.

Conclusions

- Main points:
- We have tried to recover de Sitter to de Sitter transitions from a purely Lorentzian computation.
- The final result agrees with CDL, but there are subtleties to be understood.
- In this formalism Minkowski to de Sitter transitions are allowed, in the limit of vanishing black hole mass, while are not allowed in the limit of vanishing cosmological constant.
- We find that for BT transitions the open Universe is not compelling. How the result changes if matter is added is an open question.
- We observed non-standard classical transitions with an initially contracting Universe that need further investigation.
- Lot of work left to do:
- Extend FMP to include scalar fields.
- Non-standard classical transitions.
- Explore other phenomena using the Hamiltonian approach, e.g. the bubbles of nothing.
- Phenomenological consequences of vacuum transitions.

Conclusions

- Main points:
- We have tried to recover de Sitter to de Sitter transitions from a purely Lorentzian computation.
- The final result agrees with CDL, but there are subtleties to be understood.
- In this formalism Minkowski to de Sitter transitions are allowed, in the limit of vanishing black hole mass, while are not allowed in the limit of vanishing cosmological constant.
- We find that for BT transitions the open Universe is not compelling. How the result changes if matter is added is an open question.
- We observed non-standard classical transitions with an initially contracting Universe that need further investigation.
- Lot of work left to do:
- Extend FMP to include scalar fields.
- Non-standard classical transitions.
- Explore other phenomena using the Hamiltonian approach, e.g. the bubbles of nothing.

[^0]
HFGW

Challenges and Opportunities of Gravitational Wave Searches

 at MHz to GHz frequenciesN. Aggarwal ${ }^{a}$, O.D. Aguiar ${ }^{b}$, A. Bauswein ${ }^{c}$, G. Cella ${ }^{d}$, S. Clesse ${ }^{e}$, A.M. Cruise ${ }^{f}$, V. Domcke ${ }^{g, *}$, D. G. Figueroa ${ }^{h}$, A. Geraci ${ }^{i}$, M. Goryachev ${ }^{j}$, H. Grote ${ }^{k}$, M. Hindmarsh ${ }^{l, m}$, F. Muia ${ }^{n, *}$, N. Mukund ${ }^{o}$, D. Ottaway ${ }^{p, q}$, M. Peloso $^{r, s}$, F. Quevedo ${ }^{n, *}$, A. Ricciardone ${ }^{r, s}$, J. Steinlechner ${ }^{t, *}$, S. Steinlechner ${ }^{u, *}$, S. Sun ${ }^{v}$, M.E. Tobar ${ }^{j}$, F. Torrenti ${ }^{z}$, C. Unal ${ }^{x}$, G. White ${ }^{y}$

Abstract

The first direct measurement of gravitational waves by the LIGO/Virgo collaboration has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational wave searches at frequencies above the LIGO/Virgo band, with a particular focus on the MHz and GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the standard model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts which have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop Challenges and opportunities of high-frequency gravitational wave detection held at ICTP Trieste, Italy in October 2019.

Technical concept	Frequency	Proposed sensitivity (dimensionless)	Proposed sensitivity $\sqrt{S_{n}(f)}$
Spherical resonant mass, Sec. 4.1.3 [277]			
Mini-GRAIL (built) [284]	2942.9 Hz	$\begin{gathered} 10^{-20} \\ 2.3 \times 10^{-23} \quad(*) \end{gathered}$	$\begin{aligned} & 5 \times 10^{-20} \mathrm{~Hz}^{-1 / 2} \\ & 10^{-22} \mathrm{~Hz}^{-1 / 2}\left({ }^{*}\right) \end{aligned}$
Schenberg antenna (built) [281]	3.2 kHz	$\begin{gathered} 2.6 \times 10^{-20} \\ 2.4 \times 10^{-23}(*) \end{gathered}$	$\begin{gathered} 1.1 \times 10^{-19} \mathrm{~Hz}^{-1 / 2} \\ 10^{-22} \mathrm{~Hz}^{-1 / 2} \quad(*) \end{gathered}$
Laser interferometers			
NEMO (devised), Sec. 4.1.1 [25, 268]	[$1-2.5$] kHz	9.4×10^{-26}	$10^{-24} \mathrm{~Hz}^{-1 / 2}$
Akutsu's detector, Sec. 4.1.2 [272,323]	100 MHz	$\begin{gathered} 7 \times 10^{-14} \\ 2 \times 10^{-19}(*) \end{gathered}$	$\begin{gathered} 10^{-16} \mathrm{~Hz}^{-1 / 2} \\ 10^{-20} \mathrm{~Hz}^{-1 / 2}(*) \end{gathered}$
Holometer, Sec. 4.1.2 [274]	[$1-13] \mathrm{MHz}$	8×10^{-22}	$10^{-21} \mathrm{~Hz}^{-1 / 2}$
Optically levitated sensors, Sec. 4.2.1 [59]			
1-meter prototype (under construction)	$(10-100) \mathrm{kHz}$	$2.4 \times 10^{-20}-4.2 \times 10^{-22}$	$\left(10^{-19}-10^{-21}\right) \mathrm{Hz}^{-1 / 2}$
100-meter instrument (devised)	$(10-100) \mathrm{kHz}$	$2.4 \times 10^{-22}-4.2 \times 10^{-24}$	$\left(10^{-21}-10^{-23}\right) \mathrm{Hz}^{-1 / 2}$
Inverse Gertsenshtein effect, Sec. 4.2.2			
GW-OSQAR II (built) [292]	[200-800] THz	$h_{\mathrm{c}, \mathrm{n}} \simeq 8 \times 10^{-26}$	\times
GW-CAST (built) [292]	$[0.5-1.5] \times 10^{6} \mathrm{THz}$	$h_{\mathrm{c}, \mathrm{n}} \simeq 7 \times 10^{-28}$	\times
GW-ALPs II (devised) [292]	[200-800] THz	$h_{c, \mathrm{n}} \simeq 2.8 \times 10^{-30}$	\times
Resonant polarization rotation, Sec. 4.2.4 [302]			
Cruise's detector (devised) [303]	$(100 \mathrm{MHz}-100 \mathrm{THz})$	$h \simeq 10^{-17}$	\times
Cruise \& Ingley's detector (prototype) [304, 305]	100 MHz	8.9×10^{-14}	$10^{-14} \mathrm{~Hz}^{-1 / 2}$
Enhanced magnetic conversion (theory), Sec. 4.2.5 [306]	5 GHz	$h \simeq 10^{-30}-10^{-26}$	\times
Bulk acoustic wave resonators (built), Sec. 4.2.6 [311,312]	$(\mathrm{MHz}-\mathrm{GHz})$	$4.2 \times 10^{-21}-2.4 \times 10^{-20}$	$10^{-22} \mathrm{~Hz}^{-1 / 2}$
Superconducting rings, (theory), Sec. 4.2 .7 [313]	10 GHz	$h_{0, \mathrm{n}, \text { mono }} \simeq 10^{-31}$	\times
Microwave cavities, Sec. 4.2.8			
Caves' detector (devised) [315]	500 Hz	$h \simeq 2 \times 10^{-21}$	\times
Reece's 1st detector (built) [316]	1 MHz	$h \simeq 4 \times 10^{-17}$	\times
Reece's 2nd detector (built) [317]	10 GHz	$h \simeq 6 \times 10^{-14}$	\times
Pegoraro's detector (devised) [318]	$(1-10) \mathrm{GHz}$	$h \simeq 10^{-25}$	\times
Graviton-magnon resonance (theory), Sec. 4.2.9 [319]	$(8-14) \mathrm{GHz}$	$9.1 \times 10^{-17}-1.1 \times 10^{-15}$	$\left(10^{-22}-10^{-20}\right) \mathrm{Hz}^{-1 / 2}$

Future prospects

"such detectors have so low sensitivity that they are of little
experimental interest"

Interforoneter	$\begin{gathered} \text { Arm } \\ \text { Length } \end{gathered}$	Effective Optical	Year Construction Started	
Hughes Reaeard Lab (HRL) [87, 1377.187	2	0.0085 ($\mathrm{N}=1)$	${ }_{1966}$	\uparrow
MIT probtyp even	${ }^{1.5}$	0.075 ($\mathrm{N}=50$	${ }^{1971}$	\longrightarrow MTW book
Carding 3 m protatye	${ }^{3}$	$0.012(\mathrm{~N}=1)$	${ }_{1975}^{1975}$	\longrightarrow MTW book
	1	ached $\mathrm{N}=280$	${ }^{1976}$	
Clasgow 10 p protype 120	${ }^{10}$		1980	
	${ }_{30}^{40}$	${ }_{25}^{77(000)}$	19808	
	${ }_{10}$	$\frac{27}{2(N=000}$	(1988	
	3	0.12 (P.P. P. F 20)	1987	
	100	10 (N=100)	1991	
	${ }^{20}$	4.5	1991	50 years
	3.5 300		$\underset{\substack{1993 \\ 1995}}{\text { 190 }}$	23 attempts
GEOC 60 mm [19, 209]	${ }_{600}$	$1.2 \mathrm{~N}=2)$	1995	
	200	113 (EPP: F-112)	199	
	400	1150 (P.P. P F =400)	199	
	4000 300 300		${ }^{1995}$	
			$\underset{1096}{1096}$	
	${ }^{80}$	south amm F =130)		
	${ }_{100}$		$\underset{\substack{1999 \\ 2000}}{ }$	
Qxa 7 m [34]	7	450 (F.P. Feliowoo)	${ }_{2008}$	
	3300	2850 (P.P. Felison)	2010	\rightarrow first direct detection
$\xrightarrow{\text { Qta } 9 \text { m [P28] }}$	$\stackrel{9}{4}$	${ }^{50}$	${ }_{2016}^{2016}$	
Er [90]	1000	3200 (e.P. Froson)	propeal imeer	

Future prospects

Collaboration
N. Aggarwal, M. Cruise, V. Domcke, F. Quevedo, A. Ringwald, J. Steinlechner, S. Steinlechner

Future prospects

Collaboration
N. Aggarwal, M. Cruise, V. Domcke, F. Quevedo, A. Ringwald, J. Steinlechner, S. Steinlechner

> Technology roadmap

- Involve all interested groups to collect information about current/planned technologies.
- Discuss fundamental limitations and best routes to pursue.
- Clarify achievable goals in terms of sensitivities, with and without new technical developments, within a given timeframe and budget.

New meeting

Application for joining the GWIC organisation as the HFGW community

Application for fundings

Thanks a lot for the attention!

[^0]: Phenomenological consequences of vacuum transitions.

