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ρvac(theory)
ρvac(observed)

≃ ( 1019GeV
10−3eV )

4

≈ 10122

Anthropic selection
1. Microscopic theory provides a huge number of vacua, 

i.e. a Landscape. 
2. Different regions of the universe sit in different vacua, 

and they are all populated. 
3. Observers can only exist for a small range of vacuum 

energies.

“Worst solution to the CC problem, except for all the others.”
[Fernando Quevedo]
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V

x

E

x1 x2

• Ansatz: ψ(t, x) = eiS(x,t)/ℏ

−
∂S
∂t

ψ = ( (S′ )2

2m
−

iℏ
2m

S′ ′ + V) ψ

(−
ℏ2

2m
∂2

∂x2
+ V) ψ(t, x) = iℏ

∂
∂t

ψ(t, x)

Schrödinger equation

S(x, t) = S0(x, t) + ℏS1(x, t) + ℏ2S2(x, t) + …

−
∂S0

∂t
= (S′ 0)2

2m
+ V

−
∂S1

∂t
=

1
2m (−iS′ ′ 0 + 2S′ 0S′ 1)

solve order by order
Hamilton-Jacobi equation

Semiclassical expansion

WKB Approximation



ψ(x) ∝ e−iEt/ℏ S0(x, t) = S0(x) − Et

E = (S′ 0)2

2m
+ V

Energy eigenstates:

• Always two solutions: .η = ±

S0(x) = η∫
x

dx′ 2m (E − V(x′ )) ≡ η∫
x

p(x′ ) dx′ 

• In the under the barrier region:

E − V(x) < 0 S0 is imaginary

1/τ ≡ Γ = A e−B

B = iS0 = 2i∫
x2

x1

dx′ 2m(V(x′ ) − E)

[Andreassen, Farhi, Frost, Schwartz, ’16]
[Coleman, ’77]

WKB Approximation



Decay of a Metastable State in QM

Imaginary 

SE(xb) = ∫
∞

−∞
dτ ( m

2
·x2
b + V(xb)) = 2∫

0

−∞
dτ 2V(xb) = B

V

xx1

x2

WKB result is equivalent to the Euclidean 
action evaluated on the bounce

x

τ

xb
x1

x2

ℰ = 0 =
m
2

·x2 − VSE = ∫ dτ ( m
2

·x2 + V)
dτ =

m
2V(xb)

dxb

• If , then .SE(x1) ≠ 0 B = SE − SE(x1) backgroundSE(x1) ≡

p ∼ ·x ⇔ t → − iτ



Quantum Field Theory

Scalar field theory V = ∫ d4x (−
1
2

∂μφ∂μφ − V(φ)) infinite dimensional space 
of field configurations

The corresponding potential energy is U[φ(x)] = ∫ d3x ( 1
2 (∇φ)2 + V(φ))

homogeneous tunnelling would correspond to go beyond an infinitely high barrier

τ
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Quantum Field Theory

Scalar field theory V = ∫ d4x (−
1
2

∂μφ∂μφ − V(φ)) infinite dimensional space 
of field configurations

The corresponding potential energy is U[φ(x)] = ∫ d3x ( 1
2 (∇φ)2 + V(φ))

homogeneous tunnelling would correspond to go beyond an infinitely high barrier

tunnelling is possible only locally

τ

x

Quantum tunnelling conserves energy

up-tunnelling is forbidden

Infinite many ways of intepolating

bounce minimizes the integral of U

[Callan, Coleman, ’77]
[Coleman, ’77]
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Coleman-De Luccia
Including gravity?

[Coleman, De Luccia, ’80]

• Scales close to the Planck mass.
• Radius of the bubble comparable to the horizon.
• Spacetime and topology change.

Need to patch different spacetimes together Junction conditions
[Israel, ’67]

(2+1)D timelike 
surface

O

I

Σ
n

• Pill-box integration of the Einstein equations

lim
ϵ→0 [∫

ϵ

−ϵ
Gα

β dn] = 8πSα
β

Sn
n = 0

Sα
n = 0

Sα
β = ΔKα

β − ΔKδα
β

Israel junction conditions

no momentum associated with the 
wall flows out of 

Kαβ = extrinsic curvature

Sα
β = lim

ϵ→0 [∫
ϵ

−ϵ
Tα

β dn]



CDL: de Sitter to de Sitter

V

φ

3H2
B

3H2
A

[Brown, Teitelboim, ’88]

position of the wall̂ρ ≡
κ = 4πGσ

̂ρ2 =
4κ2

(H2
O − H2

I )2 + 2κ2(H2
O + H2

I ) + κ4

ρ′ + > 0
ρ′ − > 0

ρ′ − > 0 ρ′ + < 0

̂ρ
̂ρ

S3

[Lee, Weinberg, ’87]

B = ± 8π2 [(H2
A − H2

B)2 + κ2(H2
A + H2

B)] ̂ρ
4κH2

AH2
B

−
1
2 ( 1

H2
B

−
1

H2
A )

Assume that the 
most relevant 

configuration is  
 symmetricSO(4)



CDL: de Sitter to de Sitter

V

φ

3H2
A

[Brown, Teitelboim, ’88]

position of the wall̂ρ ≡

B = ± 8π2 [(H2
A − H2

B)2 + κ2(H2
A + H2

B)] ̂ρ
4κH2

AH2
B

−
1
2 ( 1

H2
B

−
1

H2
A )

κ = 4πGσ

ρ′ + > 0
ρ′ − > 0

ρ′ − > 0 ρ′ + < 0

̂ρ
̂ρ

lim
HB→0

B = ∞ 𝖯 ∼ e−B → 0 up-tunnelling from 
Minkowski is forbidden

[Lee, Weinberg, ’87]

S3

Assume that the 
most relevant 

configuration is  
 symmetricSO(4)



CDL: Penrose Diagram
de Sitter

nucleation

           symmetrySO(4) ds2 = a2(ξ)(dξ2 + dΩ2
3)

θ →
π
2

+ it

Analytic continuation of θ

ds2 = a2(ξ)(dξ2 − dt2 + cosh2 t dΩ2
2)

Scalar field only depends on ξ

•  symmetry.SO(1,3)
• Describe orange diamond: it’s not geodesically complete.
• Black lines denote constant  surfaces.ξ

Analytic continuation ξ → T + i
π
2 ds2 = a2(T )(−dT2 + dρ2 + sinh2 ρ dΩ2

2)
θ → iρ

• Describe upper left triangle.
• Green lines denote constant T, open slices.

dΩ2
3 = dθ2 + sin2 θdΩ2

2

dS3

ce
nt

er
 o

f b
ub

bl
e

ξ
=

co
ns

t.

T = const.

dH3



CDL: Open Universe
de Sitter

nucleation

Open slices constant 
scalar field

Observer on the west pole 
observes an open universe

V

φ

slow-roll 
inflation

Observation of closed universe rules 
out the landscape and/or string theory?

[Freivogel, Kleban, Martinez, Susskind, ’06, ’14]
[Kleban, Schillo, ’12][Batra, Kleban, ’07]

ce
nt

er
 o

f b
ub

bl
e

T = const.

ξ
=

co
ns

t.



Euclidean Techniques: Issues

Minkowski to de Sitter up-tunnelling is not possible.

More general solutions using Euclidean techniques, e.g. Schwarzschild to de Sitter?
[Guth’s talk at string cosmology in ’04][Farhi, Guth, Guven, ’89]

 symmetrySO(4)

[Blanco-Pillado, Deng, Vilenkin, ’19]

Is Coleman-De Luccia reliable in all cases and for all implications?

is open universe a general consequence of tunnelling?

[Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker, ’06]

Negative mode problem. [Lavrelashvili, Rubakov, Tinyakov, ’85]



Hamiltonian Formalism for Tunnelling
ℋΨ(Φ) = [−

ℏ2

2
GMN(Φ)∇M ∇N + f(Φ)] Ψ(Φ) = 0

Ψ(Φ) = exp ( i
ℏ

S) S[Φ] = S0[Φ] + ℏS1[Φ] + ℏ2S2[Φ] + …

1
2

GMN δS0

δΦM

δS0

δΦN
+ f(Φ) = 0

S0[Φ(s)] − S0[Φ(0)]

Semiclassical expansion:

Hamilton-Jacobi:

Action:

We compute

background

𝖯 =
|Ψ(nucleated) |2

|Ψ(background) |2

Wheeler-DeWitt equation:
[DeWitt, ’67]

S0(Φ(s)) = ∫
Φ(s)

∫ d3x πMdΦM

on a fixed 
time-slice

compare wave functions of different 
spacetime configurations

Φ(s0)

Φ(s)



Vilenkin vs Hartle-Hawking
Minisuperspace: ds2 = ℓ2 (−dτ2 + a2(τ)dΩ2

3) scale factor determines the metric

Hamiltonian: ℋ =
p2

a

12a
+ 3a − 3a3H2

WDW: pa → − i
∂

∂a[ d2

da2
− f(a)] Ψ(a) = 0

f(a) ∝ a2 (1 − a2H2)f (a)

a

Action:

Boundary conditions fix constants

tunnelling 
from “nothing”

[Hartle, Hawking, Vilenkin et al., since ‘80s]

S0 = η 2π2 ∫
a

0
pada = iη 12π2 ∫

a

0
da a 1 − a2H2

f(a)

Ψ = c1eiS0 + c2e−iS0

Hartle-Hawking wave function requires Ψ(0) = 0

Vilenkin wave function requires only outgoing wave at a ≫ 1/H

η = +

η = −

iS0 =
ηπ

2GH2At  a = 1/H Vilenkin/Hartle-Hawking 
wave function

S3

1/H



Transitions à la CDL

V

φ

Summary of dS to dS Transitions

Transitions with a wall Transitions in minisuperspace

dSI /dSO ⊕ W

dSI dSO

dSA dSB

Transitions à la BT

EFT 1 EFT 2

Λ1 Λ2

thin-wall approximation



Dynamics of dS-dS Bubbles
[Cespedes, de Alwis, Muia, Quevedo, ’20]

cos ̂r = 1 − H2R2
0 cos T

R0 = H−1 sin ̂r

Bubble trajectory

de Sitter

T

r

̂r
nucleation

background
dSO

nucleated 
compound 

state

dSI /dSO ⊕ W

·
R̂2 + Veff = − 1

Veff

R̂

−1

RO

tunnelling from ‘nothing’

Bubble trajectory for string landscape transitions

• No reference to  symmetry. 
• Recover  symmetry.

SO(4)
SO(3,1)

wall at X1 = const.

−X2
0 + X2

2 + X2
3 + X2

4 = R2
0

[Blau, Guendelman, Guth, ’86]

• Asymptotic speed smaller than c.



de Sitter to de Sitter

δS = ∫ dr [πLδL + πRδR + ̂pδ ̂r] 2iStot = Btot = BB + Bw

bulk
wallbulk

wall

S2

 symmetry 
is preserved all 
the way through

SO(3)

[Fischler, Morgan, Polchinski, ’90]
[de Alwis, Muia, Pasquarella, Quevedo, ’19]

General  symmetric solutions:SO(3) ds2 = − dt2 + L2(t, r)dr2 + R2(t, r)dΩ2
2

Action:

R̂′ + > 0

R̂′ − > 0
R̂′ − > 0 R̂′ + < 0

r = 0 r = π

̂r

r = 0 r = π

The wall breaks SO(4)
̂r

portions of S3



de Sitter to de Sitter

BB

2
=

η
G ∫

̂r−ϵ

0
dr R AIL2 − R′ 2 − R′ arccos ( R′ 

L AI ) + ∫
π

̂r+ϵ
[I ↔ O]

2iStot = Btot = BB + Bw

Bw

2
=

η
G ∫ dR̂ R̂ arccos ( R′ 

L ̂A )
̂r+ϵ

̂r−ϵ

Btot

2
= −

ηπ
G

(H2
O − H2

I )2 + κ2 (H2
O + H2

I ) R2
0

8κH2
OH2

I
−

1
4H2

I
−

1
4H2

O

[Fischler, Morgan, Polchinski, ’90]
[de Alwis, Muia, Pasquarella, Quevedo, ’19]

Symmetric under the exchange I ↔ O

R2
0 =

4κ2

(H2
O − H2

I )2 + 2κ2(H2
O + H2

I ) + κ4

Background subtraction breaks the symmetry

Subtract Hartle-Hawking/Vilenkin wave function   
B
2

=
ηπ

2GH2
O

give the same result



The result is in agreement with CDL’s final result, for .η = + 1

Limit Minkowski to de Sitter:  .HO → 0

de Sitter to de Sitter [de Alwis, Muia, Pasquarella, Quevedo, ’19]

finite

𝖯(dSO → dSO /dSI ⊕ W ) ≡

Ψ( )
2

Ψ( )
2 = exp (−ηBCDL)

Ψ( )
2

⟶
ηπ
2G

H2
I + 2κ2

(H2
I + κ2)2

blows-upΨ( )
2

≃ e
π

GH2 ⟶ ∞

𝖯 → 0 due to the 
background



Dynamics of S-dS Bubbles

[Blau, Guendelman, Guth, ’86]

dS to dS transitions as ‘tunnelling from nothing’.

Veff
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RO
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In general S-dS transitions 
initial state is not ‘nothing’.
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Schwarzschild de Sitter



Dynamics of S-dS Bubbles

[Blau, Guendelman, Guth, ’86]

dS to dS transitions as ‘tunnelling from nothing’.

Veff

R̂

−1

RO

tunnelling from ‘nothing’

In general S-dS transitions 
initial state is not ‘nothing’.

−1

−0.5

−1.5
R̂

Veff

A B

0

Schwarzschild de Sitter

[Farhi, Guth, Guven, ’89]
[Fischler, Morgan, Polchinski, ’90]



Minkowski to de Sitter

R̂

Veff

[de Alwis, Muia, Pasquarella, Quevedo, ’19]

Mass of the bubble:

M =
H2R3

2G
+ 4πσR2sign(R′ −)(1 + ·R2)1/2 − 2πσH2R4sign(R′ −) − 8π2Gσ2R3



Minkowski to de Sitter

R̂

Veff

M → 0

Action
Btot

2
=

ηπ
2G

H2 + 2κ2

(H2 + κ2)2 B = 0

[de Alwis, Muia, Pasquarella, Quevedo, ’19]

𝖯(M → M/dS ⊕ W ) ≡

Ψ( )
2

Ψ( )
2 = exp

ηπ
GH2

1 −
κ4

(H2 + κ2)2

Mass of the bubble:

recover tunnelling from ‘nothing’ for M → 0

Note: Minkowski does not decay completely.

de Sitter as a resonance? [Maltz, Susskind, ’17]

finite 
transition 

rate

M =
H2R3

2G
+ 4πσR2sign(R′ −)(1 + ·R2)1/2 − 2πσH2R4sign(R′ −) − 8π2Gσ2R3



Observations
Ψ = aeB + be−B

Hartle-Hawking wave function always dominates at the turning point, unless the 
coefficient    is set to 0 imposing some boundary conditions.a

Detailed balance works with η = + 1
• Take two dS spacetimes A and B

𝖯(B → B/A ⊕ W ) =
|Ψ(B/A ⊕ W ) |2

|Ψ(B) |2 =
|Ψ(A /B ⊕ W ) |2

|Ψ(B) |2

𝖯(A → A /B ⊕ W )
𝖯(B → B/A ⊕ W )

=
|Ψ(B) |2

|Ψ(A) |2 ≈
esB

esA
s =

π
GH2

η = + 1

• In the Minkowski to de Sitter case 𝖯(M → M/dS ⊕ W )
𝖯(dS → dS/M ⊕ W )

= esdS

η = + 1



Open or Closed Universe?
Landscape transitions: closed universe?

de Sitter

T

r

̂r

[Cespedes, de Alwis, Muia, Quevedo, ’20]

Open question: how does the picture change when matter is added?



Minisuperspace: ds2 = ℓ2 (−dτ2 + a2(τ)dΩ2
3)

symmetrySO(4)

[Cespedes, de Alwis, Muia, Quevedo, ’20]

no wall

Minisuperspace transitions

dS          ‘nothing’           dS B = 24π2 (∓
1

VB
± 1

VA ) contribution larger 
than CDL

τ

dS

dSB

A

r

f (a)

a



[Cespedes, de Alwis, Muia, Quevedo, ’20]
Minisuperspace transitions

Standard classical path, eg. fly-over.
[Blanco-Pillado, Deng, Vilenkin, ’19]

kinetic energy > ΔV

ΔV

Minisuperspace: ds2 = ℓ2 (−dτ2 + a2(τ)dΩ2
3)

symmetrySO(4)
no wall

dS          ‘nothing’           dS B = 24π2 (∓
1

VB
± 1

VA ) contribution larger 
than CDL

see also Hawking-Moss [Hawking, Moss, ’82]



[Cespedes, de Alwis, Muia, Quevedo, ’20]
Minisuperspace transitions

Contracting universe: ·H = − 4πG(ρ + p) +
k
a2

if  need k ≤ 0 ρ < − pAt bounce ·H > 0 phantom matter

Non-standard classical path. kinetic energy  , initially contracting universe< ΔV
[Güngör, Starkman, ’20]

(
·a
a )

2

=
8πG

3 (
·ϕ2

2
+ V) −

1
a2

smaller kinetic energy 
needed to overcome 

the barrier
Friedman equation:

Phantom matter not required if k > 0

[Starobinski, ’78]



Conclusions
Main points:

• We have tried to recover de Sitter to de Sitter transitions from a purely Lorentzian 
computation.

• The final result agrees with CDL, but there are subtleties to be understood.

• In this formalism Minkowski to de Sitter transitions are allowed, in the limit of 
vanishing black hole mass, while are not allowed in the limit of vanishing 
cosmological constant.

• We find that for BT transitions the open Universe is not compelling. 
How the result changes if matter is added is an open question.

• We observed non-standard classical transitions with an initially contracting Universe 
that need further investigation.



Lot of work left to do:

• Extend FMP to include scalar fields.

• Non-standard classical transitions.

• Explore other phenomena using the Hamiltonian approach, e.g. the bubbles of nothing.

• Phenomenological consequences of vacuum transitions.
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Inflation (extra-species)
Inflation (effective field theory)
Scalar perturbations
Preheating
Oscillons
Phase transitions
Cosmic strings
Metastable strings
Gauge textures

BBN bound
levitated sensors

bulk acoustic wave

interferometers magnetic conversion

HFGW







Future prospects

MTW book

first direct detection

50 years 
23 attempts

“such detectors have so low 
sensitivity that they are of little 

experimental interest”
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Future prospects

Technology roadmap

• Involve all interested groups to collect information about current/planned technologies. 
• Discuss fundamental limitations and best routes to pursue. 
• Clarify achievable goals in terms of sensitivities, with and without new technical 
developments, within a given timeframe and budget.

New meeting

Application for joining the GWIC organisation 
as the HFGW community 

Application for fundings

N. Aggarwal, M. Cruise, V. Domcke, F. Quevedo, A. Ringwald, J. Steinlechner, S. Steinlechner

Collaboration



Thanks a lot for the attention!


