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Swampland:

Apparently consistent (anomaly-free) quantum effective field theories
that cannot be UV embedded in quantum gravity
(they cannot arise from string theory)

4 Energy

Quantum Gravity
(e.g. String Theory)

>
Consistent with
Quantum Gravity

Not consistent with
Quantum Gravity

Theories space

Not everything is possible in string theory/quantum gravity!!!
1 E————————————————



Goal of the Swampland program:

What are the constraints that an effective theory
must satisfy to be consistent with quantum gravity?

R ——— Se—Gstt RS

What distinguishes the landscape from the swampland?

= Potential phenomenological implications

@ Guiding principles to construct BSM models

@ New insights to solve naturalness issues in our universe
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Outline:

(I) Review of Distance Conjecture

(2) Bounds on non-geodesics in the presence of a potential

= Convex Hull SDC (in analogy to scalar WGC)

(3) Sharpening the value of order one factors



(1) Distance conjecture



Swampland Distance Conjecture (SDC)
r a

An effective theory is valid only for a finite scalar field variation A¢

because an infinite tower of states become exponentially light

m ~ m()e_O‘Aq5 when A¢ — o

- -

[Ooguri-Vafa’06]

Consider the moduli space of an effective theory:

L =g;;(¢)0¢'0¢’ welpp scalar manifold

/\ o
s

P

A¢ = geodesic distance
between P and Q

m(P) ~m(Q)e”*2?




Swampland Distance Conjecture (SDC)
r a

An effective theory is valid only for a finite scalar field variation A¢

because an infinite tower of states become exponentially light

m ~ mge_O‘A¢ when A¢ — o

- -

This signals the breakdown of the effective theory:

N Aog ~ M, exp(—alAg)
M
Species scale: Agg = —
AQG [Dvali’07] \/N
mo

(scale at which QG effects become important)




String theory evidence

Recent works:
[Grimm, Palti, IV’ 18] [Grimm,Palti,Li’ | 8] [Gendler,|V’20]

¢ 4d N=2 theories: Calabi-Yau compactifications of Type | 1
Proven for towers of BPS states walp @ > ——

V6

¢ 5d/6d N=I theories: F-theory CY compactifications [LeeLerche,Weigand'I8-19]

Corvilain, Grimm, IV’ |8
Tensionless strings (wrapping M2-branes) [ !

¢ 4d N=1 theories: Orientifold flux compactifications
BPS strings [Lanza,Marchesano,Martucci, IV’'20]

wal» uncover interesting relations between swampland conjectures and theorems of
algebraic geometry (limiting mixed hodge structures), BPS counting and modular forms

see also [Cecotti"20][Marchesano,Wiesner’|9] [Grimm,van de Heisteeg’ | 9][Baume,Marchesano,Wiesner’19]
[Font,Herraez,Ibanez’ | 9] [Grimm et al’20] [Lee et al’20]



Phenomenological implications

It gives an upper bound on the scalar field
range that can be described by an
effective field theory with finite cut-off

& Large field inflation

® Cosmological relaxation of the EW scale

For H < A :
1 M 1 2
Ap < Zlog —2 = =1
¢ = a °H a B \/WQAST
R —— e —

Opposite scaling than Lyth bound!

Large field inflation is not
ruled out but constrained

Ab < L log Mp
Q A

Refined SDC: o ~ O(1)

— A@spc A@yyin
Ao
20 ' o = 1
sl <0064 !
10'-L
5|
| [Scalisi, IV’ 18]

1 1 1 1 1 ' L L 1 L L L L 1 L L L 1 L L r
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Cosmological signatures of the tower?



Relevant questions for phenomenology

¢ A lot of evidence for the SDC in theories with extended
supersymmetry

What happens in the presence of a potential and

for non-geodesic trajectories?

€ Undetermined O(I) factor in the conjecture

m ~ moe” *2¢ a~ 0(1)

’

Can we be precise about its value?



(2) Bounds on non-geodesics

[Calderon-Infante, Uranga, IV "20]



Caveat...

What about non-geodesic trajectories?

Very important for inflation!



Caveat...
...but notice

The SDC constraints geodesics in pseudo-moduli spaces

(as long as masses are small compared to cut-off)

Valleys of the potential should also obey the SDC



Puzzle

But... Notion of geodesic changes at different energy scales in
the presence of a potential

M moduli space before adding the potential

M : moduli space after adding the potential

SDC might be satisfied in M but not in M

At which energy regime should we apply the SDC?



Proposal

SDC should apply at any energy scale, i.e. in any EFT valid at any
intermediate energy scale

Implication:

Constraints on

==  potentials consistent
with quantum gravity

Consistency of SDC
at any energy scale

(it restricts the amount of non-geodesicity allowed for trajectories

along valleys of the potential)



Example

2
Hyperbolic moduli space: £ D :—2 (Ops0"s + 0,00" @)

. a
Tower: M ~ s % ~ eXp (_OégeodA) y  Qgeod — ﬁ

SDC satisfied along (geodesic) saxionic trajectories

Consider trajectory ¢ = f(s) dA = g\/l + f'(s)*ds

o f’ ( S) 0 Asymptotically geodesic trajectory & = Qgeod \/

o f’ (3) — B = const. Critical trajectory o = Ygeod /
V1+ 52

. f/ ( S) — 00  Swampy trajectory  (No exponential decay) X



Geometric formulation

dlog M -
Exponential rate of the tower: «a(A) = — flgA = —T1"0;log M

g tangent vector

(G : subspace spanned by tangent vectors of asymptotically geodesic trajectories

M : subspace spanned by gradient vectors of logM for all towers of states

For any vector in (7, there must be at least one non-orthogonal vector
in M (i.e. a suitable tower of states becoming massless)

——-———“

* similar to Completeness Hypothesis



Geometric formulation

dlog M .
Exponential rate of the tower: «a(A) = — Z)lgA = —T1"0;log M

Stronger version: Lower bound on a(A)

L g > 1 a2 <Q>
. > N O e ; — 9
Proposals: o > N or CY, ; J(d—=2)(d—3) 2\m/

[Grimm, Palti, IV’ 18] [Gendler,1V’20] [Bdroya,Vafa’l 9] [Andriot et a'’20]  [Gendler,IV’20] [Lanza et al’20]

For any vector in (7, there must be at least one non-orthogonal vector
in M (i.e. a suitable tower of states becoming massless)

e = e —————

* similar to Completeness Hypothesis



Geometric formulation

dlog M .
Exponential rate of the tower: «a(A) = — Z)lgA = —T1"0;log M

Stronger version: Lower bound on a(A)

L g > 1 a2 <Q>
. > N O e ; — 9
Proposals: o > N or CY, ; J(d—=2)(d—3) 2\m/

[Grimm, Palti, IV’ 18] [Gendler,1V’20] [Bdroya,Vafa’l 9] [Andriot et a'’20]  [Gendler,IV’20] [Lanza et al’20]

For any vector in (7, there must be at least one non-orthogonal vector
in M (i.e. a suitable tower of states becoming massless)

with a(A) > ag

e e — e

» similar to WGC Q>(Q)
M M extr.



Trajectories allowed by SDC

A tower allows the SDC to be satisfied along trajectories with a
certain level of non-geodesicity

Tspc = UCMZ-((XO)

C(My,a,)

- convex hull
condition

SDC satisfied if G C Tspco



Convex Hull SDC

S 1z .
Define scalar charge to mass ratio: zZ = —¢g 2V logM  (n analogy to WGC)

Yukawa scalar forcer £ D M?($)x* ~ 2M Oy M o + ...

_,\a scalar charge

Exponential rate of the tower: OK(A) =172

G : space of possible “charge” directions

SDC: For every charge direction, there must exist a charged
infinite tower of states with a(A) > ag

Define “extremal states” as those satisfying

—

n-zZ=«oy

“extremal region” = ball of radius «




Convex Hull SDC

Convex Hull SDC: the SDC is satisfied by any trajectory with
exponential rate g if the convex hull of the vectors Z; contains the
extremal region, namely the unit ball of radius «

-
-
-
-
-
-
-
-
-
-
-

....................
- - - ~
- -

-
-
-
-
-
-
- -
-

It resembles a Scalar WGC |Z] > O(1)

[Paltil 6]



Convex Hull SDC

SDC can be used to constrain either:

* the spectra of the theory, by requiring as many towers as
needed to satisfy the convex hull condition,

* or the possible trajectories along which the SDC can be
satisfied for a fixed set of towers and, therefore, the scalar
potentials consistent with quantum gravity.



Example

712

(0,80"s + 0,90" )
m» Z=(0,a/n)

Hyperbolic moduli space: £ D 2

a
Tower: M ~ s “ ~exp(—ad) , a= -

Critical paths:

allowed
2N ¢ = f(s), f'(s) = 8 = const.
swampy = 38,1

Those with 5 < Bmax
will satisfy the SDC

a 2 (lerit, — 5
5maX:(COSH)_2—1: (—) —1 ny/1+f



Evidence in string theory

Calabi-Yau flux compactifications of Type Il string theory:

€ Asymptotic behaviour of field metric:

K = — log(pd(sj) + O(@QWitj))

2
A2 — " )2 iy2] L Hyperbolic behaviour
d > j(Sz)Z (ds') + (d¢")*| +

7

€ Asymptotic behaviour of flux scalar potential:

Viks', k¢') = V(s ¢') with 3 a flux-independent
0,V=0—>s=p¢"~+... parameter.

- &
[Grimm,Li,IV'19] —> critical path!




Evidence in string theory

Calabi-Yau flux compactifications of Type Il string theory:

== lead to the most generic potentials allowing for maximum non-
geodesicity of the potential valleys while respecting the SDC along them.

1 M Qgeod
Ap < —log —* o =
¢_&ogA Vi
D e

confirming backreaction issues found in [Baume,Palti'l6] [I.V.’ | 6]

Hence, the SDC also constraints axionic trajectories!

Open tasks: Check other compactifications
e.g. [McAllister,Silversten,Westphal,Warse” | 4]

Go beyond parametric control



(3) Sharpening order one factors

[Lanza, Marchesano, Martucci, IV "20]

[Gendler, IV "20]



Sharpening order one factors

So far, the infinite tower of states is always charged under some p-form
gauge field that becomes weakly coupled asymptotically.

g—0 at A¢p — o©

No global
. symmetries

Weak Gravity Swampland Distance
Conjecture Conjecture

Same tower satisfies the SDC and the WGC and acts as a quantum gravity
obstruction to restore a global symmetry

Exponential rate fixed by black hole extremality bound!
L



N=1 4d EFTs

String compactifications suggest that an approximate axionic shift symmetry
emerges at infinite field distances

string
Consider a BPS string charged under B, (dual to the axion)

* Saxions are driven by the string backreaction to infinite

distance at the string core! 0
e r el
S(T):SOJF%lOg% ¢:¢0+% r =0

e The string becomes weakly coupled and tensionless as s° — 00

String Backreaction <= RG flow <= trajectory in field space

- . T
[Polchinski’ 4]



N=1 4d EFTs

Weakly coupled axionic strings €= Infinite field distance limits

S EEEE—
(Proposal: All infinite distance limits of a 4d EFT can be realised as an RG flow

endpoint of an axionic string ) [Lanza, Marchesano, Martucci, IV "20]

If the string satisfies the WGC: Q >~y T The cut-off due to the tower of
string modes decreases

A72’n,a,aj = Tmax < Tpexp (_’Ydmaa;) exponentially with the distance

We derive the SDC!

Exponential rate:

1
m ~moe “20 wp =

\/ QTLZ
n1 N9

using K = —log(s}*s5”...)

>

DO |2



summary

- Consistency of SDC at any energy scale implies constraints on non-
geodesic trajectories and, therefore, the scalar potentials consistent
with quantum gravity.

- The SDC can be formulated as a convex hull condition on the scalar

charge to mass ratio of the towers, in analogy to the WGC.

- CY flux string compactifications lead to potentials realising the
maximum level of non-geodesicity consistent with the SDC.

- The exponential rate of the tower is bounded by black hole
extremality bound if there is a vanishing gauge coupling asymptotically.
Example: towers from BPS strings in N=1 4d EFTs

%@m /



back-up slides



Asymptotic limits in moduli spaces

Agc

>

Ap — 00

These limits seem under control from the point of view of QFT

but still, the EFT must break down when approaching the boundary
by quantum gravity effects

A imate global tries, .
pproximate global Symmetries $wampland conjectures:

Weakly coupled gauge theories,
Large field ranges... / * Infinite towers of massless states WGC, SDC

.  Runaway potentials ¢SC
...come at a price.



Dual formulation in terms of 2,3-forms

M2 o
4D N=| EFT: S = / <TPR — M2K,5dé® A d’ — v)

i

(Si, ai) — (l,“ BQZ)

v
—E/Gij (Mgdé-A*dz- - Hs; A xHs ) —/lTbF“*sz
1 N ) 7 ao- a
2 7 M2 2
1 0°K 1, b
Gij = 5377 V==-T"f,
77 2051057 2 JaJt

Field metric = 2-form gauge couplings Potential = 3-form gauge couplings



No force identities

We add BPS charged objects: —/dp+1§T(¢)\/—h + G/Bp+1

Strings - T = M}2>|6i€i‘ ; Qe = Mp \/Gz’jeie‘j
Membranes = T, = 2M3 ¢35 |g,I1%] | Qq = Mp\/T®qquq,
They satisfy (off-shell): 10T ||* = MEQ2
3
HaTmemHz o §TI?1€H1 — MFQ’Q?I
R ——— —————

They look as a no-force condition:  (see also [Herraez'20])

(p+1)(1 —p)

GZJ(?ZT(?]T | T2 — FCLbC]aQb




Interpretation

Low codimension objects ==» change asymptotic structure of vacuum

How to define T and Q!

Localised operators entering the EFT rather than states of a vacuum

—/dp+1§T(¢)\/Th+e/Bp+1

[Polchinski’ 1 4]

Brane couplings should be regarded as defined at the EFT cut-off A

Classical back reaction == Classical RG flow 7T'(A)

brane coupling

irrelevant

S —

marginally relevant

relevant



Strings

Metric Ansatz: ds® = —dt? + dz? + e*Pdzdz

String induces a flow of the scalars ¢ =15+ a

( ) n e 1 T . &,
— e — a —da -
S\ >0 2T - ro Y or
1 dK 1
. o . o 2 o o
String tension: T'(r) = MZel(r) , {(r)= 5 3 ()
K = —Llogs string
RG flow: T(A) €
= A M3 2s0 + £ log(Arp)
———— ———— 0
String Backreaction <= RG flow 0

& trajectory in field space



Strings

Recall: TA) _ 5 ‘
M? My 1 epe A
p T(Ao) | 7T gAO

At A—=>0(r—o00): T(A) —
WMZ?
()’

EFT breaks down at  Agong = A exp(

At A >0 (r—=0): TA)—0 , s(ra) = o0

EFT breaks down at  Ayas = T(Amaz)/?

T

A



Derivation of SDC

For a given A, the moduli space
accessible by the EFT is finite since it
breaks down when My

A2 =T (Amaz)

max

. . 1
Field distance from 70 to Tmazx — Amax

o ik

maz 1 o 1 1 1o

o)do = — —dI' < log

maac
/ ) M Trax Q Tmaz
field _ gau ge i \

metric  coupling RG flow + no-force .,  dT s WGC

Gij = %@%‘K condtion: 1o QMp >~T

Max cut-off A% = Traee < Toexp (—Ydmaz) SDC!

max

R —————————ee e ————

WGC for strings =§» SDC with A = v/2



DASC

Weakly coupled axionic strings €= Infinite field distance limits

e e e

Distant Axionic String Conjecture (DASC):

All infinite distance limits of a 4d EFT can be realised as an RG flow
endpoint of a fundamental axionic string

Evidence from String theory: [Lanza, Marchesano, Martucci, IV'to appear]

Higher dimensional spaces: only a subset of BPS strings are weakly coupled
C&'' ={e e Nz|(m,e) >0Vm € C;} C Cs
instanton charges (J k) string charges

If ec€ CEFT —> weakly coupled string : tensionless at infinite distance

If ec CS — CEFT > strongly coupled string : tensionless at finite distance




WGC for strings

Result:  WGC for strings =» SDC with \ = /2

\> extremality factor
What strings satisfy WGC?

» All BPS strings satisfy ||074.||> = M2Q?

* SatisfyingWGC & > 7 I’ is a non-trivial condition on the Kahler metric

Check: Strings at the asymptotic limits of field space satisfy WGC

(we replace asymptotic behaviour o = —log(s 5> ...) )
1
* A= (Same type of bound than for N=2)
\/ QTLZ

IRESRES_———



In terms of extremality factors

-
Recall, WGC:

3 p-dim state with QM, > ~T and ~

, _ Q p(2 — p)
T

extr.

\_

* SDC tower coming from BPS string in N=1 4d:
)\ _ /y L ‘Oé8|

m ~ moe ~¢ i

2 4

* Flux induces N=1I potential dual to the charge of a BPS membrane:

VV| > cV D = |a,]

I* membrane is extremal

* SDC tower coming from BPS particles in N=2 4d: [Gendler, V' 20]

m ~ moe 29 = )= \a_2p|



In terms of geometric data

( )
Recall, WGC:

3 p-dim state with QM, >~T and ~° =
\_ ' )

* Flux induces N=1I potential dual to the charge of a BPS membrane:

) 2
VV|>cV W c=|an > = Vml” [ IVV]
n’i m2 V
if membrane is extremal (see also [Andriot et al’20])

* SDC tower coming from BPS particles in N=2 4d: [Gendler, V' 20]

1
m ~ moe” 29 = ) = \a_p|

2 o \/277/7;

V




Membranes

Tq
kTq
2MZA

Classical backreaction: TSH(A) =
1

The charge parametrises the scalar potential: Q* = T*°q,q, = 2V (q)

10T 1> — Sr2 M2Q?%  no-force conditions

2 ™ /
e ([[DWP =3W?2) =V(g) N=I sugra <«

If On1q = Kooy * Qm(A) M, = vT(A)  extremal with

/y p—
These extremal membranes satisfy [|0Q2 || = ¢ Q2, (A diatonic factor

Lop ~ 6—06¢
= [0V =c V* with c=|a] ds conjecture!

D S — ————tEmm—————»




Membranes

Result:  SaturatingWGC w=» No deSitter conjecture

What membranes saturate WGC?

At the asymptotic limits, we can identify some membranes saturating

indeed the WGC with
| " v = Z 2Nn;07 — g using K = —log(sy"s3” ... )

2

= :2§j2@-2> o
= c= | inaz_ini
R —— B

Consistent with no-go theorem for dS at asymptotic limits [Grimm,Li, [V’19]

Recall that in N=2: A = a/2 Could VM ~ VV] 2 [Andriot et al'20]
M? V

(exp rate of |-form gauge coupling)



