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Apparently consistent (anomaly-free) quantum effective field theories 
that cannot be UV embedded in quantum gravity

(they cannot arise from string theory) 

Swampland: 

Not everything is possible in string theory/quantum gravity!!!



What are the constraints that an effective theory 
must satisfy to be consistent with quantum gravity?

What distinguishes the landscape from the swampland?

Goal of the Swampland program:

Potential phenomenological implications

Guiding principles to construct BSM models
New insights to solve naturalness issues in our universe
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(1) Review of Distance Conjecture

(2) Bounds on non-geodesics in the presence of a potential

(3) Sharpening the value of order one factors

Outline:

Convex Hull SDC (in analogy to scalar WGC)



(1) Distance conjecture



Swampland Distance Conjecture (SDC)

An effective theory is valid only for a finite scalar field variation    

because an infinite tower of states become exponentially light

when

��

�� ! 1

[Ooguri-Vafa’06]

m ⇠ m0e
�↵��

L = gij(�)@�
i@�j scalar manifold

P

Q
��

geodesic distance 
between P and Q

�� =

�1

�2

Consider the moduli space of an effective theory:

m(P ) ⇠ m(Q)e�↵��



m0

..

N

⇤QG

An effective theory is valid only for a finite scalar field variation    

because an infinite tower of states become exponentially light

when

��

�� ! 1

This signals the breakdown of the effective theory:

��

E
⇤QG =

Mpp
N

Species scale:
[Dvali’07]

(scale at which QG effects become important)

Mp

m ⇠ m0e
�↵��

⇤QG ⇠ Mp exp(�↵��)

Swampland Distance Conjecture (SDC)



String theory evidence

4d N=2 theories:

5d/6d N=1 theories:

4d N=1 theories:

Calabi-Yau compactifications of Type II

Proven for towers of BPS states

F-theory CY compactifications
Tensionless strings (wrapping M2-branes)

Orientifold flux compactifications
BPS strings

[Grimm, Palti, IV’18] [Grimm,Palti,Li’18]

[Corvilain, Grimm, IV’18]

[Lee,Lerche,Weigand’18-19]

[Gendler,IV’20]

[Lanza,Marchesano,Martucci, IV’20]

Recent works:

uncover interesting relations between swampland conjectures and theorems of 
algebraic geometry (limiting mixed hodge structures), BPS counting and modular forms

[Marchesano,Wiesner’19] [Grimm,van de Heisteeg’19][Baume,Marchesano,Wiesner’19]
[Font,Herraez,Ibanez’19]

[Cecotti’20]see also 
[Grimm et al’20] [Lee et al’20]

↵ � 1p
6



Phenomenological implications

It gives an upper bound on the scalar field 
range that can be described by an 

effective field theory with finite cut-off

Cosmological relaxation of the EW scale
Large field inflation

Refined SDC:

Large field inflation is not 
ruled out but constrained 

H  ⇤For :

↵ ⇠ O(1)

��  1

↵
log

Mp

⇤

��  1

↵
log

Mp

H
=

1

↵
log

r
2

⇡2Asr

Opposite scaling than Lyth bound!
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[Scalisi,IV’18]

↵ = 1

Cosmological signatures of the tower?



Relevant questions for phenomenology

A lot of evidence for the SDC in theories with extended 
supersymmetry

What happens in the presence of a potential and 
for non-geodesic trajectories?

Undetermined O(1) factor in the conjecture

Can we be precise about its value?

,m ⇠ m0e
�↵�� ↵ ⇠ O(1)



(2) Bounds on non-geodesics

[Calderon-Infante, Uranga, IV ’20]



What about non-geodesic trajectories?

Caveat…

Very important for inflation!



(as long as masses are small compared to cut-off)

The SDC constraints geodesics in pseudo-moduli spaces

Valleys of the potential should also obey the SDC

…but notice
Caveat…



Notion of geodesic changes at different energy scales in 
the presence of a potential

At which energy regime should we apply the SDC?

Puzzle

But…

moduli space before adding the potential
moduli space after adding the potential

M :

M :

SDC might be satisfied in       but not in      MM



SDC should apply at any energy scale, i.e. in any EFT valid at any 
intermediate energy scale

Constraints on 
potentials consistent 
with quantum gravity

(it restricts the amount of non-geodesicity allowed for trajectories 
along valleys of the potential)

Proposal

Implication:

Consistency of SDC 
at any energy scale



Consider trajectory � = f(s) d� =
n

s

q
1 + f 0 (s)2 ds

L � n2

s2
( @µ s @

µ s + @µ �@µ � )

Example

Hyperbolic moduli space:

f 0(s) ! 0

f 0(s) ! 1

f 0(s) ! � ⌘ const.

•  

•  

•  

Asymptotically geodesic trajectory ↵ = ↵geod

Critical trajectory ↵ =
↵geodp
1 + �2

Swampy trajectory (No exponential decay)

Tower:

SDC satisfied along (geodesic) saxionic trajectories

M ⇠ s�a ⇠ exp (�↵geod�) , ↵geod =
a

n



↵(�) = �d logM

d�
= �T i @i logMExponential rate of the tower:

subspace spanned by tangent vectors of asymptotically geodesic trajectories

subspace spanned by gradient vectors of logM for all towers of states

G :

M :

Geometric formulation

For any vector in    , there must be at least one non-orthogonal vector 
in     (i.e. a suitable tower of states becoming massless)

G
M

similar to Completeness Hypothesis

tangent vector



Stronger version: Lower bound on ↵(�)

Proposals:

Geometric formulation

↵(�) = �d logM

d�
= �T i @i logMExponential rate of the tower:

↵ � 1p
2n

for CYn ↵ � 1p
(d� 2)(d� 3)

; ; ↵ � 1

2

✓
Q

m

◆

extr.

[Grimm, Palti, IV’18] [Gendler,IV’20] [Bdroya,Vafa’19] [Andriot et al’20] [Gendler,IV’20] [Lanza et al’20]

For any vector in    , there must be at least one non-orthogonal vector 
in     (i.e. a suitable tower of states becoming massless)

G
M

similar to Completeness Hypothesis



Stronger version: Lower bound on ↵(�)

Proposals:

Geometric formulation

↵(�) = �d logM

d�
= �T i @i logMExponential rate of the tower:

similar to WGC

↵ � 1p
2n

for CYn ↵ � 1p
(d� 2)(d� 3)

; ; ↵ � 1

2

✓
Q

m

◆

extr.

↵(�) � ↵0with

For any vector in    , there must be at least one non-orthogonal vector 
in     (i.e. a suitable tower of states becoming massless)

G
M

[Grimm, Palti, IV’18] [Gendler,IV’20] [Bdroya,Vafa’19] [Andriot et al’20] [Gendler,IV’20] [Lanza et al’20]

Q

M
�

✓
Q

M

◆

extr.



G ⇢ TSDC

TSDC =
[

CMi(↵0)

A tower allows the SDC to be satisfied along trajectories with a 
certain level of non-geodesicity

SDC satisfied if

Trajectories allowed by SDC

convex hull 
condition



Define scalar charge to mass ratio: ~z = �g�
1
2 ~r logM (in analogy to WGC)

Define “extremal states” as those satisfying

~n · ~z = ↵0

↵(�) = ~n · ~zExponential rate of the tower:

G : space of possible “charge” directions

For every charge direction, there must exist a charged 
infinite tower of states with  ↵(�) � ↵0

SDC:

“extremal region” = ball of radius ↵0

Convex Hull SDC

L � M2(�)�2 ' 2M@�M ��2 + . . .Yukawa scalar force:
scalar charge



Convex Hull SDC: the SDC is satisfied by any trajectory with 
exponential rate       if the convex hull of the vectors      contains the 

extremal region, namely the unit ball of radius
↵0 ~zi

↵0

Convex Hull SDC

It resembles a Scalar WGC |~z| � O(1)
[Palti16]



• the spectra of the theory, by requiring as many towers as 
needed to satisfy the convex hull condition,

•  or the possible trajectories along which the SDC can be 
satisfied for a fixed set of towers and, therefore, the scalar 
potentials consistent with quantum gravity.

SDC can be used to constrain either:

Convex Hull SDC



Tower: M ⇠ s�a ⇠ exp (�↵�) , ↵ =
a

n

Critical paths: 

� = f(s) , f 0(s) ! � ⌘ const.

~n =
1p

1 + �2
(�, 1)

�max = (cos ✓)�2 � 1 =

✓
a

n↵0

◆2

� 1
↵crit. =

a

n
p

1 + �2

�  �maxThose with

will satisfy the SDC

L � n2

s2
( @µ s @

µ s + @µ �@µ � )

Example

Hyperbolic moduli space:

~z = (0, a/n)

✓

swampy

allowed



Evidence in string theory

Calabi-Yau flux compactifications of Type II string theory:

Asymptotic behaviour of field metric:

K = � log(pd(s
j) +O(e2⇡it

j

))

d�2 =
X

i

n2
i

(si)2
⇥
(dsi)2 + (d�i)2

⇤
+ . . . Hyperbolic behaviour

Asymptotic behaviour of flux scalar potential:

with     a flux-independent 
parameter.

[Grimm,Li,IV’19]

V (si,�i) ' niV (si,�i)

@siV = 0 ! si = � �i + . . .
�

critical path!



Evidence in string theory

lead to the most generic potentials allowing for maximum non-
geodesicity of the potential valleys while respecting the SDC along them.

[Baume,Palti'16] [I.V.,’16]

Hence, the SDC also constraints axionic trajectories!

Open tasks:  Check other compactifications

��  1

↵
log

Mp

⇤
↵ =

↵geodp
1 + �2

confirming backreaction issues found in

e.g. [McAllister,Silversten,Westphal,Warse’’14]

Calabi-Yau flux compactifications of Type II string theory:

Go beyond parametric control



(3) Sharpening order one factors

[Lanza, Marchesano, Martucci, IV ’20]

[Gendler, IV ’20]



Sharpening order one factors

So far, the infinite tower of states is always charged under some p-form 
gauge field that becomes weakly coupled asymptotically. 

Weak Gravity
Conjecture

Swampland Distance
Conjecture

No global 
symmetries

g ! 0 at �� ! 1

Same tower satisfies the SDC and the WGC and acts as a quantum gravity 
obstruction to restore a global symmetry

Exponential rate fixed by black hole extremality bound!



N=1 4d EFTs

String compactifications suggest that an approximate axionic shift symmetry 
emerges at infinite field distances

• The string becomes weakly coupled and tensionless as si ! 1

string

✓

r = 0

Consider a BPS string charged under B2 (dual to the axion)

String Backreaction trajectory in field spaceRG flow

[Polchinski’14]

• Saxions are driven by the string backreaction to infinite 
distance at the string core!

s(r) = s0 +
e

2⇡
log

r

r0
� = �0 +

e✓

2⇡



We derive the SDC!

Weakly coupled axionic strings Infinite field distance limits

N=1 4d EFTs

(Proposal: All infinite distance limits of a 4d EFT can be realised as an RG flow 
endpoint of an axionic string)

⇤2
max ⌘ Tmax  T0 exp (��dmax)

If the string satisfies the WGC: The cut-off due to the tower of 
string modes decreases 

exponentially with the distance

Q � � T

� 1p
2ni

K = � log(sn1
1 sn2

2 . . . )using

Exponential rate:

↵ =
�

2m ⇠ m0e
�↵��

[Lanza, Marchesano, Martucci, IV ’20]



Summary

Consistency of SDC at any energy scale implies constraints on non-
geodesic trajectories and, therefore, the scalar potentials consistent 
with quantum gravity.

The SDC can be formulated as a convex hull condition on the scalar 
charge to mass ratio of the towers, in analogy to the WGC.

CY flux string compactifications lead to potentials realising the 
maximum level of non-geodesicity consistent with the SDC.

Thank you!

The exponential rate of the tower is bounded by black hole 
extremality bound if there is a vanishing gauge coupling asymptotically. 
Example: towers from BPS strings in N=1 4d EFTs



back-up slides



Asymptotic limits in moduli spaces

but still, the EFT must break down when approaching the boundary
by quantum gravity effects

These limits seem under control from the point of view of QFT 

Approximate global symmetries, 
Weakly coupled gauge theories, 
Large field ranges…

…come at a price.

Swampland conjectures:
• Infinite towers of massless states 
• Runaway potentials

..⇤QG
E

Mp

�� ! 1

WGC, SDC
dSC



Dual formulation in terms of 2,3-forms

S =

Z ✓
M2

P

2
R�M2

PK↵�̄ d�
↵ ^ ⇤d�̄�̄ � V

◆
4D N=1 EFT:

�1

2

Z
G

ij

✓
M

2
P d`i ^ ⇤d`j +

1

M
2
P

H3 i ^ ⇤H3 j

◆

Gij ⌘
1

2

@2K

@si@sj

Field metric = 2-form gauge couplings

(si, ai) ! (li, B2i)

�
Z

1

2
TabF

a
a ⇤ F b

4

V =
1

2
T abfafb

fa ! Ca
3

Potential = 3-form gauge couplings



No force identities

Te = M2
P|ei`i| , Qe = MP

q
Gijeiej

We add BPS charged objects:

Tq = 2M3
P e

1
2K |qa⇧a| , Qq = MP

p
T abqaqb

Strings

Membranes

�
Z

dp+1⇠ T (�)
p
�h+ e

Z
Bp+1

k@Tstrk2 = M2
PQ

2
e

k@Tmemk2 �
3

2
T 2
mem = M2

PQ
2
q

They satisfy (off-shell):

They look as a no-force condition:

Gij@iT@jT +
(p+ 1)(1� p)

2
T 2 = F abqaqb

(see also [Herraez’20])



Interpretation

�
Z

dp+1⇠ T (�)
p
�h+ e

Z
Bp+1

Localised operators entering the EFT rather than states of a vacuum 

Low codimension objects change asymptotic structure of vacuum

How to define T and Q?

codim brane coupling

> 2

2

1

irrelevant

 marginally relevant

relevant

Classical back reaction             Classical RG flow

Brane couplings should be regarded as defined at the EFT cut-off ⇤

T (⇤)

[Polchinski’14]



Strings

ds2 = �dt2 + dx2 + e2Ddzdz̄Metric Ansatz:

String Backreaction

s(r) = s0 +
e

2⇡
log

r

r0

String induces a flow of the scalars t = is+ a

a = a0 +
e✓

2⇡,

String tension: T (r) = M2
p e `(r) `(r) = �1

2

dK

ds
=

1

2s(r)
,

K = � log s

T (⇤)

M2
P

=
e

2s0 +
e
⇡ log(⇤r0)

RG flow:

r⇤ = ⇤�1

RG flow

trajectory in field space

string

✓

r = 0



Recall:

At ,(r ! 0) :⇤ ! 1 s(r⇤) ! 1T (⇤) ! 0

EFT breaks down at ⇤max = T (⇤max)
1/2

⇤

T

rr⇤

Strings
T (⇤)

M2
p

=
e

M2
p

T (⇤0)
+ e

⇡ log ⇤
⇤0

T (⇤) ! 1⇤ ! 0 (r ! 1) :At

EFT breaks down at ⇤strong = ⇤ exp(�
⇡M2

p

T (⇤)
)



Derivation of SDC

For a given    , the moduli space 
accessible by the EFT is finite since it 
breaks down when

RG flow + no-force 
condition: Q2 = �dT

d� QMp � �T

WGC

⇤2
max = T (⇤max)

⇤

Field distance from r0 rmax = ⇤�1
maxto

dmax =

Z �max

0
Qs(�)d� =

1

Mp

Z T0

Tmax

1

Q
dT  1

�
log

T0

Tmax

:

SDC!⇤2
max ⌘ Tmax  T0 exp (��dmax)Max cut-off:

WGC for strings SDC with � = �/2

gauge 
coupling

field 
metric 
Gij =

1

2
@2
ijK

=



Weakly coupled axionic strings Infinite field distance limits

DASC

All infinite distance limits of a 4d EFT can be realised as an RG flow 
endpoint of a fundamental axionic string

Distant Axionic String Conjecture (DASC):

Evidence from String theory: [Lanza, Marchesano, Martucci, IV’to appear]

Higher dimensional spaces:

CEFT
S = {e 2 NZ|hm, ei � 0 8m 2 CI}

e 2 CEFT
S

e 2 CS � CEFT
S

weakly coupled string :

strongly coupled string :

tensionless at infinite distance

tensionless at finite distance

⇢ CS

only a subset of BPS strings are weakly coupled

If

If

string chargesinstanton charges



WGC for strings SDC with � = �/2

k@Tstrk2 = M2
PQ

2
e• All BPS strings satisfy

• Satisfying WGC Q � � T is a non-trivial condition on the Kahler metric

WGC for strings

Result:

What strings satisfy WGC?
extremality factor

Check: Strings at the asymptotic limits of field space satisfy WGC

(we replace asymptotic behaviour of

(Same type of bound than for N=2)� =
1p
2ni

K = � log(sn1
1 sn2

2 . . . ) )



In terms of extremality factors

Recall,   WGC:
QMp � � Tp-dim state with 

• Flux induces N=1 potential dual to the charge of a BPS membrane:

|rV | � cV

if membrane is extremal

c = |↵m|

• SDC tower coming from BPS string in N=1 4d:

m ⇠ m0e
���� � =

�

2
=

|↵s|
4

and �2 ⌘ Q

T

����
extr.

=
p(2� p)

2
+

|↵|2

4
9

• SDC tower coming from BPS particles in N=2 4d:

m ⇠ m0e
����

� =
|↵p|
2

[Gendler, IV’ 20]



• SDC tower coming from BPS string in N=1 4d:

• Flux induces N=1 potential dual to the charge of a BPS membrane:

m ⇠ m0e
����

|rV | � cV

if membrane is extremal

• SDC tower coming from BPS particles in N=2 4d:

m ⇠ m0e
����

� =
|↵p|
2

c = |↵m|

� =
�

2
=

|↵s|
4

In terms of geometric data

� 1p
2ni

� 2

ni

K = � log(sn1
1 sn2

2 . . . )using

Recall,   WGC:
QMp � � T and �2 ⌘ Q

T

����
extr.

=
p(2� p)

2
+

|↵|2

4
p-dim state with 9

[Gendler, IV’ 20]

� 1p
2ni

?
(see also [Andriot et al’20])
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Membranes
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1� kTq

2M2
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Classical backreaction:

The charge parametrises the scalar potential: Q2 = T abqaqb = 2V (q)

no-force condition

N=1 sugraeK(||DW ||2 � 3W 2) = V (q)
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T 2
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These extremal membranes satisfy

dS conjecture!with
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Membranes

Recall that in N=2: � = ↵/2

(exp rate of 1-form gauge coupling)
? [Andriot et al’20]
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Saturating WGC No deSitter conjecture

[Grimm,Li, IV’19]Consistent with no-go theorem for dS at asymptotic limits

Result:

What membranes saturate WGC?

At the asymptotic limits, we can identify some membranes saturating 
indeed the WGC with
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