

An advanced Storage Monitoring: **Status and Future** developments

G. Donvito **INFN-BARI**

www.eu-egee.org

Outline

- Introduction and goals
- Common issues
- dCache monitoring
 - Example of use
- CASTOR monitoring
- DPM monitoring
- Future Plans:
 - Requirements
 - Missing information
 - Fulfilling Grid Monitoring Working Group Standards

Conclusions

e<mark>e</mark>ee

Introduction and goals

Enabling Grids for E-science

- This "storage monitoring" aims to provide to the farm admin and users a complete and detailed view on several aspects:
 - Who is the owner of the files?
 - What is the amount of files/bytes transferred/resident per given: directory, User/VO, Protocols, Pool, external host, etc?
 - How many times each files has been accessed?
 - Which were the last files read/written?
 - Are there errors? Which error is most frequent? etc

• By using historical data, the tool can act as a simple "storage accounting"

- The tool is designed to provide a local repository of storage data in each site
- The local repository can be queried to get statistical and aggregated information about the site
- Our current plans is to add this "statistical and aggregated information" to GridICE monitoring system.

- The information are mainly retrieved starting from "billing" files
- The sensor is installed only on the dCache admin node
- A local DB is used in order to store all the information
- Extensive use of the DB is made also to store partial information in order to minimize the load on the storage system
- Information on each file is collected starting from its appearing into the storage system up to its deletion
- We can distinguish between storage operation (like: copy with gridftp, srmcp, srm-put, srm-get, local access with dcap or XRootD)

EGEE-II INFSO-RI-031688

GSSD June 2007

SE monitoring dCache: data

- The following information are collected:
 - The "storage-class" of each file
 - The pool from which the files is accessed
 - Local User and Group (VO) that writes the file
 - When it is possible, the DN of the user
 - The client that reads/writes file
 - The amount of bytes involved in the transfer
 - Duration of the transfer
 - Protocol of each transfer
 - "Machine door" trough which the data flows
 - Errors
 - The File deletion time

- Sensors for retrieving and collecting information storage date from d-Cache: completed
- Under test since several months
- We are now developing the web interface
 - It will provide:
 - Graphical information presentation
 - Aggregate information
 - Access to the detailed information

- Monitoring running since 2006-08-24
- More then 266000 files observed
- Typical results (choosing CMS production directory):
 - 4122 (files found on monitoring DB)/4162 (files found on the file-system)
 - 5893 (GB found on monitoring DB)/5910 (GB found on file-system)

It is less than 1% of error.

Example of usage and features Enabling Grids for E-science

mysql> select *,FROM_UNIXTIME(timestamp) from Table_03,File_3 where Table_03.pnfs_id=File_3.pnfs_id and timestamp> (UNIX_TIMESTAMP(NOW())-86400) order by timestamp\G

```
.....
pnfs id: 00010000000000009B74E8
       user name: unknown
     error number: 0
       timestamp: 1181033630
         error:
         door: DCap-pccms2-unknown-9653@dcap-pccms2Domain
         host: unknown
        pnfs id: 00010000000000009B74E8
       file name: 760EDB1D-3FF2-DB11-9DC4-00304823EF23.root
       dimension: 341215437
     uid creation: 0
     guid_creation: 0
         path:
   /pnfs/cmsfarm1.ba.infn.it/data/cms/phedex/store/unmerged/mc/2007/4/23/Filtered_h150_ZZ_4mu-DIGI-
   RECO-NoPU/DIGI-RECO/0000/760EDB1D-3FF2-DB11-9DC4-00304823EF23.root
        status: p
FROM UNIXTIME(timestamp): 2007-06-05 10:53:50
1517 rows in set (1.78 sec)
```

.....

Example of usage and features

Enabling Grids for E-sciencE

mysql> select *,FROM_UNIXTIME(Table_02.start_time) from Table_02,File_3 where Table_02.pnfs_id=File_3.pnfs_id and start_time> (UNIX_TIMESTAMP(NOW())-86400) and protocol like "%gftp%" order by start_time\G

```
pnfs id: 00010000000000000A92358
           start time: 1181033791
             protocol: GFtp-1.0
               pool: gridse03 3@gridse03Domain
          operation type: srmPut
             duration: 125349
          byte involved: 1433507560
               host: gridse01.ba.infn.it
          storage class: STRING@osm
          error number: 0
              error:
             pnfs id: 00010000000000000A92358
            file name: 18AD6F46-3413-DC11-B92D-00304828FD0E.root
            dimension: 1433507560
          uid creation: 11410
          guid creation: 1399
               path: /pnfs/cmsfarm1.ba.infn.it/data/cms/phedex/store/data/2007/5/22/TAC-TIF-120-DAQ-EDM-
    CMSSW_1_3_0_pre6-DIGI-RECO-Run-00009273/DIGI-RECO/0000/18AD6F46-3413-DC11-B92D-00304828FD0E.root
             status: p
FROM UNIXTIME(Table 02.start time): 2007-06-05 10:56:31
504 rows in set (2.37 sec)
```

GGGGG

...

 $(\mathbf{2})$

Example of usage and features

Exan Enabling Grids for E-science

••••

mysql> select *,FROM_UNIXTIME(Table_02.start_time), (byte_involved/(duration/1000))/1024/1024 as MBs from Table_02,File_3 where Table_02.pnfs_id=File_3.pnfs_id and start_time> (UNIX_TIMESTAMP(NOW())-86400) and protocol like "%gftp%" and error_number="0" order by start_time\G

pnfs id: 00010000000000000A92358 start time: 1181033791 protocol: GFtp-1.0 pool: gridse03 3@gridse03Domain operation type: srmPut duration: 125349 byte involved: 1433507560 host: gridse01.ba.infn.it storage class: STRING@osm error_number: 0 error: pnfs id: 000100000000000000A92358 file name: 18AD6F46-3413-DC11-B92D-00304828FD0E.root dimension: 1433507560 uid creation: 11410 quid creation: 1399 path: /pnfs/cmsfarm1.ba.infn.it/data/cms/phedex/store/data/2007/5/22/TAC-TIF-120-DAQ-EDM-CMSSW 1 3 0 pre6-DIGI-RECO-Run-00009273/DIGI-RECO/0000/18AD6F46-3413-DC11-B92D-00304828FD0E.root status: p FROM UNIXTIME(Table_02.start_time): 2007-06-05 10:56:31 MBs: 10.906344225691

Example of usage and features

Enabling Grids for E-sciencE

mysql> select *,FROM_UNIXTIME(timestamp) from Table_03,File_3 where Table_03.pnfs_id=File_3.pnfs_id and timestamp> (UNIX_TIMESTAMP(NOW())-84600) and door like "%gridftp%" order by timestamp \G

```
pnfs id: 00010000000000000A92400
       user name: /C=IT/O=INFN/OU=Personal Certificate/L=Bari/CN=Nicola De Filippis/E=Nicola.defilippis@ba.infn.it
      error number: 0
       timestamp: 1181034123
         error:
          door: GFTP-griddisk-Unknown-14287@gridftp-griddiskDomain
          host: gridfirb6.ba.infn.it
        pnfs id: 00010000000000000A92400
       file name: FC54541A-3613-DC11-AF0E-00304820AC2D.root
       dimension: 1428943816
      uid creation: 11410
     guid creation: 1399
          path: /pnfs/cmsfarm1.ba.infn.it/data/cms/phedex/store/data/2007/5/22/TAC-TIF-120-DAQ-EDM-
    CMSSW 1 3 0 pre6-DIGI-RECO-Run-00009273/DIGI-RECO/0000/FC54541A-3613-DC11-AF0E-00304820AC2D.root
         status: p
FROM UNIXTIME(timestamp): 2007-06-05 11:02:03
331 rows in set (1.46 sec)
```

eee

...

(4)

Example of usage and features (5)

mysql> select user_name, SUM(dimension)/1024/1024/1024 from Table_03,File_3 where Table_03.pnfs_id=File_3.pnfs_id and Table_03.host like "%cern%" and door like "%FTP%" and path like "%mc%" and user_name like "%Dimitrije%" and FROM_UNIXTIME(timestamp)> "2007-02-01" and FROM_UNIXTIME(timestamp) < "2007-03-01" GROUP BY user_name \G

user_name: /C=CH/O=CERN/OU=GRID/CN=Dimitrije Maletic 2991 SUM(dimension)/1024/1024/1024: 881.405239352025 1 row in set (0.94 sec)

- All the data that flows in/out Storage Element is collected:
 - Information about gsiftp transfers is collected from the globusgridftp log files
 - using a daemon always watching the log file: this reduces the load
 - The data is periodically uploaded to a site-local database

Information about users:

- Retrieved from "messages" log file
- using a daemon always watching the log file: this reduces the load
- The data is periodically uploaded to a site-local database

SE monitoring: CASTOR gridftp Information provided

- Operation type
 - Read o Write
 - Access protocols
 - LAN/WAN access
- Transferred File
 - Filename (Full path)
 - Bytes transferred
 - Number of streams
 - Exit_status
- Involved Host
 - Source machine
 - Dest. machine
 - Submitting machine

- Time
 - Start (local time)
 - End (local time)
 - Duration
 - Shift (UTC)
- Users Info
 - Local user
 - *VO*
 - DN (write operation)
 - DN (read operation)

- All the information are retrieved from RFIOD log file
- Data access monitoring
 - File name
 - Byte transferred
 - Start and end time
 - User ID e Group ID
 - Source host and destination host
 - Errors

EGEE-II INFSO-RI-031688

GSSD June 2007

• File transfer table

Start	End	Stream	File	Source	Dest	Bytes	type	User	Date	Shift
-------	-----	--------	------	--------	------	-------	------	------	------	-------

• Users table

Start	End	Login_h	File	Bytes	type	DN	User
-------	-----	---------	------	-------	------	----	------

- It is really difficult to match the information in "messages" log file with the globus-gatekeeper log file
- It is not possible to retrieve DN for read operations

Web interface example

Enabling Grids for E-sciencE

- Choose your preferred Site Source: Site: cnaf.infn.it v sc3.cr.cnaf.infn.it v - Choose your preferred Site Destination / VO / Type(Read/Write): Site: ALL v ALL v VO ALL v Type: ALL v Time interval: 1 hour v - Choose your preferred start date: November 28, 2005 for: 1 week v Draw							
Graph Number of KBites/1 hour 400000000 000000000 000000000 00000000	31-Oct 07:33 02-Nov 15:06 04-Nov 22:40	Destinat Source: sc	tion: All Sites 3.cr.cnaf.infn.i 02: 02: 12 00 04-11 14 15	t 16-Mov 12:25 00:02 volv-81	21-Mov 03:33	ax rate: 20152 HB/1 hour 001 001 001 001 001 001 001 00	

- It is quite easy to port the code written for CASTOR
- The system is now under test to verify its reliability
- No problem for DPM in retrieving the user DN in each operation
- The matching between Users and Files information is much easier

Catania:

SAGE (Storage Accounting in a Grid Environment) (F.Scibilia, C. Cherubino, D. Russo)

 \cdot It is a software architecture to monitor the storage space used (usage metering).

- It works on Disk Pool Manager (DPM) based SE
- No modifications to DPM requested
- Generates Usage Records which refer to disk usage
 - Usage Records are build by looking to GridFTP-DPM e RFIO log files
 - DPM internal DB maintains history of operations, certificates, turls ecc..
- It is foreseen to forward storage Usage Record to DGAS HLRs as well.

- Understand the requirements in Storage Monitoring coming from experiments:
 - An interesting documents has been already published by: Mirco Ciriello-INFN Pisa, Flavia Donno-CERN
 - <u>https://twiki.cern.ch/twiki/bin/viewfile/LCG/GSSDSubGr</u> oups?rev=2;filename=report_dpm.pdf
 - A good base to provide guidelines in developing storage monitoring tools (not only for DPM)

- Information required, already provided by this tool:
 - number of transfers for each file
 - number of requests for each file
 - number of requests processed
 - number of movements on each pool
 - number of active users
 - number of files per VO
 - amount of occupied space per VO/role/user
 - amount of occupied space for each directory/file
 - the file name
 - owner
 - the group

- Information that we will be provided soon with this tool:
 - The available space per VO/User/Group/Role or directory
 - If really needed, also "per pool"
 - Pool selection policy
 - The space type: Volatile, Durable, Permanent
 - The retention policy: Replica, Output, Custodial
 - The default lifetime
 - The default pin time
 - Access Control List (ACL), for each file, if present

Future Plans: new requirements

Enabling Grids for E-sciencE

- How we will provide the info:
 - dCache:
 - Using the "JPyton Interface"
 - Log files
 - Castor:
 - Log Files
 - CLI or other?
 - DPM
 - Standard CLI
 - Through SAGE
 - Uses DPM DB and log files
 - STORM:
 - Some information are available in the log files like for CASTOR/DPM
 - All the others: API/CLI ??

EGEE-II INFSO-RI-031688

Enabling Grids for E-science Working Group Standards

- We are currently implementing the standards established by "Grid Monitoring Working Group Standards"
 - On each local sensor : the "Grid Monitoring Probes Specification"
 - On the DB server sensor: the "Grid Monitoring Data Exchange Standard"

EGEE-II INFSO-RI-031688

GSSD June 2007

- Some information are simple but "precious": should be provided natively by the Storage Manager software
 - Space used/available per VO/User/Groups/Role
- This tool can be very useful for a site admin in order to control what is happening on the SEs:
 - not only bandwidth and storage usage...
 - but also for prompt error detection, misuse detection, etc
- The final user can use the aggregate information provided by this tool in order to monitor his/her activity on a specific SE
 - When this information will be into GridICE monitoring tool, this will allow the user to have an overall view of data flowing on the entire grid
 - This seems very useful for VO managers