## Latest ATLAS VBF/VBS results

Joany Manjarrés

on behalf of the ATLAS collaboration

## VBS and VBF: measurable, but not measurable

- Protons in LHC serve as source of vector boson beams
- Not possible to separate VBS (or VBF) in a gauge invariant way $\rightarrow$ Measure EWK V(V)jj production

- Usually QCD mediated production of $\mathrm{V}(\mathrm{V}) \mathrm{jj}$ at the LHC has larger cross sections than the EWK production $\rightarrow$ crucial for a precise measurement to understand and reduce the QCD background!


## Published measurements

What has been done so far, and what will be covered in this talk ?

Standard Model Production Cross Section Measurements


## Published measurements

- What has been done so far, and what will be covered in this talk?

|  | Channel |  | Energy (Luminosity) | Observed (Expected) $\sigma$ | Covered in this talk! |
| :---: | :---: | :---: | :---: | :---: | :---: |
| VBF | $W^{ \pm} \mathrm{jj}$ | $\frac{\text { Eur. Phys. J. C } 77}{(2017) 474}$ | $7,8 \mathrm{TeV}\left(5,20 \mathrm{fb}^{-1}\right)$ | $>5 \sigma$ |  |
|  | Z jj | $\underline{2006.15458}$ | $13 \mathrm{TeV}\left(139 \mathrm{fb}^{-1}\right)$ | $>5 \sigma$ |  |
| VBS | $\mathrm{W} \pm \mathrm{W} \pm \mathrm{jj}$ | Phys. Rev. Lett. 123 (2019) 161801 | $13 \mathrm{TeV}\left(36 \mathrm{fb} \mathrm{b}^{-1}\right)$ | $6.5 \sigma$ (4.4) | Covered in this talk! |
|  | $\mathrm{W} \pm \mathrm{Z} \mathrm{jj}$ | $\frac{\text { Phys. Lett. B } 793}{(2019) 469}$ | $13 \mathrm{TeV}(36 \mathrm{fb}-1)$ | 5.3б (3.2) |  |
|  | W $\pm \gamma \mathrm{jj}$ | - | - | - |  |
|  | $\mathrm{Z}_{\gamma} \mathrm{jj}$ | $\frac{\text { Phys. Lett. B } 803}{(2020) 135341}$ | $13 \mathrm{TeV}\left(36 \mathrm{fb}{ }^{-1}\right)$ | $4.1 \sigma(4.1)$ |  |
|  | ZZ jj | 2004.10612 | 13 TeV ( $139 \mathrm{fb}^{-1}$ ) | $5.5 \sigma$ (4.3) |  |
|  | $\mathrm{W} \pm$ V semi-lept jj | $\frac{\text { Phys. Rev. D } 100}{(2019) 032007}$ | $13 \mathrm{TeV}\left(36 \mathrm{fb} \mathrm{b}^{-1}\right)$ | $<3 \sigma$ |  |



## EWK Zjj differential cross sections

- Signal region built requiring high di-jet invariant mass, no hadronic activity in between the tagging jets and $Z$ boson centrality
- QCD background (strong) has the largest contribution over the spectra
- Large QCD background miss-modeling, huge efforts to extract it in a



## Signal extraction steps

Binned maximum likelihood fit performed to reduce dependence on MC mis-modeling. In the fit:

1. QCD background is estimated $\rightarrow 4$ different regions using two uncorrelated variables:

- Bin-by-bin weights for strong Zjj, separate for low and high centrality and linked within the gap jets bins
- Linear correction applied to strong Zjj to correct for residual dependence on the N gap jets

2. Bin-by-bin electroweak $\mathrm{Z}_{\mathrm{jj}}$ signal strengths (same in all regions)
3. Procedure repeated for different MC generators
4. The final EWK signal is taken to be the midpoint of the envelope of yields
 obtained using the three different QCD Zjj event generators


## Zjj differential cross sections results

- Differential cross sections extracted for EWK only and EWK+QCD production as a function of four observables: $\mathrm{m}_{\mathrm{jj}},\left|\Delta \mathrm{y}_{\mathrm{jj}}\right|, \mathrm{p}_{\mathrm{T}, \|}$ and $\Delta \varphi_{\mathrm{ij}}$


EWK+QCD Zij production



## Effective Field Theory interpretation

- To capture the EFT effects cross sections can be written as :
- Expectation: EFT-SM interference (linear) leading contribution
- Different distributions show different sensitivities to the linear and quadratic terms (Madgraph SMEFT at LO)
- Limits extracted using the measured EW Zjj differential cross-section as a function of the parity-odd $\Delta \phi_{\mathrm{jj}}$

| Wilson <br> coefficient | Includes <br> $\left\|\mathcal{M}_{\mathrm{d} 6}\right\|^{2}$ | $95 \%$ confidence interval $\left[\mathrm{TeV}^{-2}\right]$ |  | $p$-value (SM) |
| :---: | :---: | :---: | :---: | :---: |
| $c_{W} / \Lambda^{2}$ | Expected | $[-0.30,0.30]$ | $[-0.19,0.41]$ | $45.9 \%$ |
|  | yes | $[-0.31,0.29]$ | $[-0.19,0.41]$ | $43.2 \%$ |
| $\tilde{c}_{W} / \Lambda^{2}$ | no | $[-0.12,0.12]$ | $[-0.11,0.14]$ | $82.0 \%$ |
|  | yes | $[-0.12,0.12]$ | $[-0.11,0.14]$ | $81.8 \%$ |
| $c_{H W B} / \Lambda^{2}$ | no | $[-2.45,2.45]$ | $[-3.78,1.13]$ | $29.0 \%$ |
|  | yes | $[-3.11,2.10]$ | $[-6.31,1.01]$ | $25.0 \%$ |
| $\tilde{c}_{H W B} / \Lambda^{2}$ | no | $[-1.06,1.06]$ | $[0.23,2.34]$ | $1.7 \%$ |
|  | yes | $[-1.06,1.06]$ | $[0.23,2.35]$ | $1.6 \%$ |

- Strongest limits when pure dim-6 are excluded from the theoretical prediction!

$$
\begin{aligned}
\text { Quadratic: } & -\cdots \cdot\left|\mathcal{M}_{\mathrm{d} 6}\right|^{2} \\
\text { EFT-SM linear: } & --2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{d} 6}\right) \\
\text { full EFT: } & -\left|\mathcal{M}_{\mathrm{d} 6}\right|^{2}+2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{d} 6}\right)
\end{aligned}
$$



$m_{\mathrm{jj}}[\mathrm{TeV}] \quad\left|\Delta y_{\mathrm{j} j}\right| \quad p_{\mathrm{T}, \mathrm{II}}[\mathrm{GeV}]$


## EWK ZZjj production

- ZZjj analysis performed in two channels $\ell \ell \ell \ell j \mathrm{j}$ and $\ell \ell v v i j$
- Interesting channel to probe neutral aQGCs
- Different background composition, data driven estimation for the main components
- $\ell \ell v v j j$ signal region:
- WZ estimated in 3-lepton control region
- Non-resonant (ttbar and WW) estimated in e $\mu \nu \nu$ control region
- lelejj signal region:
- QCD ZZjj control region with low $m_{j j}$ or $\Delta y(j)$ included in the fit


Di-jet invariant mass in the signal regions




High centrality region to verify $m_{j j}$ modeling

|  | Process | Generator | ME accuracy |
| :--- | :--- | :--- | :--- |
| $\square$ | ZZ EWK | MG5_NLO+PY8 | LO |
| $\square$ | ZZ QCD | Sherpa 2.2.2 | NLO (0j), LO (1-3j) |
| $\square$ | WZ | Sherpa 2.2.2 | NLO (0j), LO (1-3j) |

## EWK ZZjj results

- Extract inclusive cross-section EWK+QCD in the signal region

|  | Measured fiducial $\sigma[\mathrm{fb}]$ | Predicted fiducial $\sigma[\mathrm{fb}]$ |
| :--- | :---: | :---: |
| $\ell \ell \ell \ell j j$ | $1.27 \pm 0.12$ (stat) $\pm 0.02$ (theo) $\pm 0.07(\exp ) \pm 0.01$ (bkg) $\pm 0.03$ (lumi) | $1.14 \pm 0.04$ (stat) $\pm 0.20$ (theo) |
| $\ell \ell \nu \nu j j$ | $1.22 \pm 0.30$ (stat) $\pm 0.04$ (theo) $\pm 0.06(\exp ) \pm 0.16$ (bkg) $\pm 0.03$ (lumi) | $1.07 \pm 0.01$ (stat) $\pm 0.12$ (theo) |

- Then use Multivariate Discriminants (MD) to separate the EWK component. Three MD fitted together




Observation!!

|  | $\mu_{\mathrm{EW}}$ | $\mu_{\mathrm{QCD}}^{\ell \ell \ell \ell j}$ | Significance Obs. (Exp.) |
| :--- | :---: | :---: | :---: |
| $\ell \ell \ell \ell j j$ | $1.5 \pm 0.4$ | $0.95 \pm 0.22$ | $5.5(3.9) \sigma$ |
| $\ell \ell \nu \nu j j$ | $0.7 \pm 0.7$ | - | $1.2(1.8) \sigma$ |
| Combined | $1.35 \pm 0.34$ | $0.96 \pm 0.22$ | $5.5(4.3) \sigma$ |

Fiducial cross-section in agreement with the SM


## EWK Z $\mathrm{Y}_{\mathrm{j} j}$ production

Electroweak $Z \gamma+2 j$ production not yet observed.

- Strong evidence reported by both ATLAS and CMS with 13 TeV data
- Latest ATLAS result using 2015+2016 data (36fb-1)
- Interesting channel to probe neutral aQGCs (larger cross section than $Z Z$ ), sensitive to WWZY vertex
- Analysis selection:
- Uses an mll+mlly cut to reduce FSR contributions
- Veto b-jets
- $\Delta \eta_{\mathrm{j} j}>1$, centrality $\left(Z_{\gamma}\right)<5$ and $m_{j j}>150 \mathrm{GeV} \rightarrow$ Looser than the usual VBS selections used
- Simulation

| Process | Generator | ME accuracy |
| :--- | :--- | :--- |
| Z EWK | MG5_NLO+Py8 | LO |
| Z $\quad$ QCD | Sherpa 2.2.2 | NLO (0-1j), LO (3j) |
| Z+jets | Sherpa 2.2.2 | NLO (0-2j), LO (3-4j) |






## Background estimation

Phys. Lett. B 803 (2020) 135341

- QCD Zy+2j
- Normalization estimated from data (pre-correction 0.91), and then fitted in the signal region
- Data

Total uncertainty $\mathrm{Z} \gamma \mathrm{EW}$
Z $\gamma$ QCD
Z+jets
$\mathrm{tt} \gamma$
Other Backgrounds

- Z+jet: DD estimate of shape and normalization
- 2D sideband method (photon ID, isolation), in region close to SR except: jet pT 30 GeV , mjj<150 GeV
- Extrapolation to SR using ratio $\mathrm{Z}+\mathrm{jet} / \mathrm{ZY}$
- ttbar Y :
- Pre-correction factor from data: 1.41 + fit in a CR
- Dedicated CR (b-CR): >=1 b-jet ->~70\% purity, 25\% Zy QCD.
- Smaller backgrounds: WZ, Wt
- From MC (less than $0.5 \%$ in SR)




## $Z_{\gamma j \mathrm{j}}$ results

- EWK Zүjj signal extraction:
- Fitted BDT distribution trained to separate EW signal from background (13 variables)
- Simultaneous fit of signal region and b-CR


## Evidence !!

4.1 $\sigma$ expected and observed significance

- Measured cross sections:

| $\sigma_{Z \gamma_{j j-\mathrm{EW}}}^{\text {fid. }}$ |  | $7.8 \pm 1.5$ (stat.) $\pm 1.0$ (syst.) ${ }_{-0.8}^{+1.0}$ (mod.) fb |
| :---: | :---: | :---: |
| $\sigma_{Z \gamma j j-\mathrm{EW}}^{\text {fid., Maph }}$ |  | $7.75 \pm 0.03$ (stat.) $\pm 0.20$ (PDF $\left.+\alpha_{\mathrm{S}}\right) \pm 0.40$ (scale) fb |
| $\sigma_{Z \gamma j j-\mathrm{EW}}^{\sigma_{\text {fid., Sherpa }}}$ |  | $8.94 \pm 0.08$ (stat.) $\pm 0.20$ (PDF $\left.+\alpha_{\mathrm{S}}\right) \pm 0.50$ (scale) fb |

Variable used in the BDT

$$
\begin{gathered}
\hline \hline m_{j j} \\
\Delta \eta_{j j} \\
\zeta(\ell \ell \gamma) \\
m_{\ell \ell \gamma} \\
p_{T}^{\ell \ell \gamma} \\
m_{\ell \ell} \\
p_{T}^{\ell \ell} \\
p_{T}^{\text {ead lep }} \\
p_{T}^{\text {lead jet }} \\
\eta^{\text {lead jet }} \\
\min \Delta R(\gamma, j) \\
\Delta \phi(\ell \ell \gamma, j j) \\
\Delta R(\ell \ell \gamma, j j) \\
\hline
\end{gathered}
$$

## BDT score in the signal region



- Combined EW+QCD Zүjj cross-section also measured: same method and phase spaces, except for CRs which are excluded

| $\sigma_{Z \gamma j j}^{\text {fid. }}$ | $=$ | $71 \pm 2$ (stat.) $)_{-7}^{+9}$ (syst.) ${ }_{-17}^{+21}$ (mod.) fb |
| :---: | :---: | :---: |
| $\sigma_{Z \gamma j j}^{\text {fid., MADGRAPH+SHERPA }}$ | $=$ | $88.4 \pm 2.4$ (stat.) $\pm 2.3$ (PDF $\left.+\alpha_{\mathrm{S}}\right)_{-19.1}^{+29.4}$ (scale) fb. |

In agreement with the expectation. Large uncertainties from theory modeling!

## Summary

- New differential cross-section measurement of electroweak Zjj production, with strong limits on new physics through an effective field theory interpretation
- Measurements of inclusive Vjj and $\mathrm{V} V \mathrm{jj}$ production in VBF/VBS topologies are providing a stress test of perturbative QCD
- Crucial to understanding the background modeling and to make public the relevant information! What do theorist need?


EWK Zjj production


- VBS measurements are still in their infancy!
- Lots of new results in preparation with full run-2 data
- For "precision" measurement, need to improve signal and background modeling uncertainties


## Backup

## EWK WZjj production

$\mathrm{W} \pm \mathrm{Z} \rightarrow$ evel

## Signal extraction strategy

- Boosted Decision Tree trained on simulation events, to separate WZjj-EW from backgrounds
- 15 discriminant variables used

$$
\begin{aligned}
& m_{\mathrm{jj}}, N_{\mathrm{jets}}, \mathrm{p}_{\mathrm{T}^{\mathrm{j}}}, \mathrm{p}^{\mathrm{j}}{ }^{\mathrm{j} 2}, \eta^{\mathrm{j} 1}, \Delta \eta_{\mathrm{jj}}, \Delta \phi_{\mathrm{jj}} \\
& \mathrm{ly}_{1, \mathrm{w}}-\mathrm{yz}_{\mathrm{z}}, \mathrm{p}_{\mathrm{T}} \mathrm{w}, \mathrm{p}^{\mathrm{w}}, \mathrm{n}^{\mathrm{w}}, \mathrm{~m}_{\mathrm{T}} \mathrm{wz} \\
& \Delta \mathrm{R}(\mathrm{j} 1, \mathrm{Z}), \mathrm{R}_{\mathrm{p} \mathrm{~T}^{\text {thard }}} \text {, Zlep }
\end{aligned}
$$

## EWK same charge WW production

## $\mathrm{W} \pm \mathrm{W} \pm \rightarrow \ell \nu \ell v$

- Best EWK/QCD over background ratio!
- Main background WZ QCD mediated production:
- Normalization taken from data
- Shape taken from simulation
- Theory uncertainties applied (PDF, scale, shower)


Signal extraction strategy $\rightarrow$ Fitting framework development

- Simultaneous fit of dijet invariant mass ( $\mathrm{M}_{\mathrm{j} j}>200 \mathrm{GeV}$ ) and WZ control region


## Observation !!

Observed (expected with Sherpa) significance is $6.5 \sigma$ (4.4б)

## Why Vector Boson scattering is interesting?

- Example: Cross-section or longitudinal $W_{L^{\prime}}+W_{L^{-}} \rightarrow W_{L^{+}}+W_{L^{-}}$scattering

Can we measure the longitudinal component alone?


- Test of electroweak sector and EW Symmetry Breaking
- Complementary to "direct" Higgs boson property studies
- Differences in this sector will be indications of new physics


## Why Vector Boson scattering is interesting?

Can we measure the Longitudinal component

## Why Vector Boson scattering is interesting?

Need to find a variable sensitive to the center of mass boson scattering


# Testing the electroweak sector and EW Symmetry Breaking <br> <br> ATLAS 

 <br> <br> ATLAS}
$\sqrt{\mathrm{s}}=13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$


## Testing the electroweak sector and EW Symmetry Breaking

$\sqrt{\mathrm{s}}=13 \mathrm{TeV}, 36.1 \mathrm{fb}^{-1}$

So far compatible with the $S M$, but still limited by


