

Latest ATLAS VBF/VBS results

Joany Manjarrés on behalf of the ATLAS collaboration

January 25, 2021

VBS and VBF: measurable, but not measurable

- Protons in LHC serve as source of vector boson beams
- Not possible to separate VBS (or VBF) in a gauge invariant way → Measure EWK V(V)jj production

■ Usually QCD mediated production of V(V)jj at the LHC has larger cross sections than the EWK production → crucial for a precise measurement to understand and reduce the QCD background!

Published measurements

What has been done so far, and what will be covered in this talk ?

Published measurements

■ What has been done so far, and what will be covered in this talk ?

	Channel		Energy (Luminosity)	Observed (Expected) σ		
VBF	W± jj	<u>Eur. Phys. J. C 77</u> <u>(2017) 474</u>	7, 8 TeV (5, 20 fb ⁻¹)	>5σ	Covered in	
	Z jj	<u>2006.15458</u>	13 TeV (139 fb ⁻¹)	>5σ	this talk!	
VBS	W±W± jj	<u>Phys. Rev. Lett.</u> 123 (2019) 161801	13 TeV (36 fb ⁻¹)	6.5σ (4.4)		
	₩±Z jj	<u>Phys. Lett. B 793</u> (2019) 469	13 TeV (36 fb ⁻¹)	5.3σ (3.2)		
	₩±γ jj	-	-	-		
	Zγ jj	<u>Phys. Lett. B 803</u> (2020) 135341	13 TeV (36 fb ⁻¹)	4.1σ (4.1)	Covered in	
	ZZ jj	<u>2004.10612</u>	13 TeV (139 fb ⁻¹)	5.5σ (4.3)	this talk!	
	W±V semi-lept jj	<u>Phys. Rev. D 100</u> (2019) 032007	13 TeV (36 fb ⁻¹)	< 3σ		

Electroweak Zjj production

EWK Zjj differential cross sections

- Signal region built requiring high di-jet invariant mass, no hadronic activity in between the tagging jets and Z boson centrality
- QCD background (strong) has the largest contribution over the spectra
- Large QCD background miss-modeling, huge efforts to extract it in a data driven way!

Ratio

2700:1

EWK signal

Signal extraction steps

Binned maximum likelihood fit performed to reduce dependence on MC mis-modeling. In the fit:

- QCD background is estimated → 4 different regions using two uncorrelated variables:
 - Bin-by-bin weights for strong Zjj, separate for low and high centrality and linked within the gap jets bins
 - Linear correction applied to strong Zjj to correct for residual dependence on the N gap jets
- 2. Bin-by-bin electroweak Zjj signal strengths (same in all regions)
- 3. Procedure repeated for different MC generators
- 4. The final EWK signal is taken to be the midpoint of the envelope of yields obtained using the three different QCD Zjj event generators

10⁵

10⁴

 10^{3}

10²

10

2 3

4 5

2 3

1

5

4

2 3

1

4 5

1 2 3

Zjj differential cross sections results

Differential cross sections extracted for EWK only and EWK+QCD production as a function of four observables: m_{jj}, IΔy_{jj} I, p_{T,II} and Δφ_{jj}

Effective Field Theory interpretation

Ratio to

To capture the EFT effects cross sections can be written as :

- Expectation: EFT-SM interference (linear) leading contribution
- Different distributions show different sensitivities to the linear and quadratic terms (Madgraph SMEFT at LO)
- Limits extracted using the measured EW Zjj differential cross-section as a function of the parity-odd Δφ_{jj}

Wilson	Includes	95% confidence	e interval [TeV ⁻²]	<i>p</i> -value (SM)
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Strongest limits when pure dim-6 are excluded from the theoretical prediction!

Electroweak ZZjj production

QCD background

EWK ZZjj production

- ZZjj analysis performed in two channels $\ell \ell \ell \ell \ell j$ and $\ell \ell \nu \nu j$
- Interesting channel to probe neutral aQGCs
- Different background composition, data driven estimation for the main components
 - $\ell\ell\nu\nu$ ij signal region:
 - WZ estimated in 3-lepton control region
 - Non-resonant (ttbar and WW) estimated in $e\mu\nu\nu$ control region
 - *eeee*jj signal region:
 - QCD ZZjj control region with low m_{jj} or $\Delta y(jj)$ included in the fit

EWK ZZjj results

Extract inclusive cross-section EWK+QCD in the signal region

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj$	$1.27 \pm 0.12 (\text{stat}) \pm 0.02 (\text{theo}) \pm 0.07 (\text{exp}) \pm 0.01 (\text{bkg}) \pm 0.03 (\text{lumi})$	$1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo})$
$\ell\ell u u j j$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

Then use Multivariate Discriminants (MD) to separate the EWK component. Three MD fitted together

Observation!!

	$\mu_{ m EW}$	$\mu_{ m QCD}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	5.5 (3.9) σ
$\ell\ell u ujj$	0.7 ± 0.7	_	1.2 (1.8) σ
Combined	1.35 ± 0.34	0.96 ± 0.22	5.5 (4.3) σ

Fiducial cross-section in agreement with the SM

Electroweak Zγjj production ^q ^{jet} e, μ e, μ _g _{jet}

EWK Zγjj production

- Electroweak Zγ+2j production not yet observed.
 - Strong evidence reported by both ATLAS and CMS with 13 TeV data
 - Latest ATLAS result using 2015+2016 data (36fb⁻¹)
- Interesting channel to probe neutral aQGCs (larger cross section than ZZ), sensitive to WWZγ vertex
- Analysis selection:
 - Uses an mll+mllγ cut to reduce FSR contributions
 - Veto b-jets
 - $\Delta \eta_{jj} > 1$, centrality ($Z\gamma$)<5 and $m_{jj} > 150 \text{GeV} \rightarrow Looser than the usual VBS selections used$
 - Simulation

	Process	Generator	ME accuracy
	ΖγΕ₩Κ	MG5_NLO+P _Y 8	LO
	Zγ QCD	Sherpa 2.2.2	NLO (0-1j), LO (3j)
	Z+jets	Sherpa 2.2.2	NLO (0-2j), LO (3-4j)
1			

m_{llv} [GeV]

Background estimation

QCD Zy+2j

Normalization estimated from data (pre-correction 0.91), and then fitted in the signal region

Data Total uncertainty Zγ EW Zγ QCD Z+jets ttγ Other Backgrounds

- **Z+jet**: DD estimate of shape and normalization
- 2D sideband method (photon ID, isolation), in region close to SR except: jet pT 30 GeV, mjj<150 GeV
- Extrapolation to SR using ratio Z+jet/ $Z\gamma$

ttbar y:

- Pre-correction factor from data: 1.41 + fit in a CR
- Dedicated CR (b-CR): >=1 b-jet -> \sim 70% purity, 25% Zy QCD. 0

Smaller backgrounds: WZ, Wt

From MC (less than 0.5% in SR) 0

$Z\gamma jj$ results

- EWK Zyjj signal extraction:
 - Fitted BDT distribution trained to separate EW signal from background (13 variables)
 - Simultaneous fit of signal region and b-CR

Evidence !!

 4.1σ expected and observed significance

Measured cross sections:

$\sigma^{ m fid.}_{Z\gamma jj- m EW}$	=	7.8 ± 1.5 (stat.) ± 1.0 (syst.) $^{+1.0}_{-0.8}$ (mod.) fb
$\sigma^{ ext{fid., MadGraph}}_{Z\gamma jj- ext{EW}}$	=	$7.75 \pm 0.03 \text{ (stat.)} \pm 0.20 \text{ (PDF} + \alpha_{\text{S}}) \pm 0.40 \text{ (scale) fb}$
$\sigma^{ ext{fid., Sherpa}}_{Z\gamma jj- ext{EW}}$	=	$8.94 \pm 0.08 \text{ (stat.)} \pm 0.20 \text{ (PDF} + \alpha_{\text{S}}) \pm 0.50 \text{ (scale) fb}$

Combined EW+QCD Zyjj cross-section also measured: same method and phase spaces, except for CRs which are excluded

$\sigma^{\rm fid.}_{Z\gamma ii}$	=	71 ± 2 (stat.) $^{+9}_{-7}$ (syst.) $^{+21}_{-17}$ (mod.) fb	In agreement with the expectation. Large
$\sigma_{Z\gamma jj}^{ m fid., MadGraph+Sherpa}$	=	$88.4 \pm 2.4 \text{ (stat.)} \pm 2.3 \text{ (PDF} + \alpha_{\text{S}})^{+29.4}_{-19.1} \text{ (scale) fb.}$	uncertainties from theory modeling!

 m_{jj}

 $\Delta \eta_{jj}$

 $\zeta(\ell\ell\gamma)$

 $m_{\ell\ell\gamma}$

 $p_T^{\ell\ell\gamma}$

 $m_{\ell\ell}$ $p_T^{\ell\ell}$

 $p_T^{\text{lead lep}}$

 $p_T^{\text{lead jet}}$

 $\eta^{\text{lead jet}}$

 $min\Delta R(\gamma, j)$ $\Delta \phi(\ell \ell \gamma, jj)$

 $\Delta R(\ell \ell \gamma, jj)$

Summary

- New differential cross-section measurement of electroweak Zjj production, with strong limits on new physics through an effective field theory interpretation
- Measurements of inclusive Vjj and VVjj production in VBF/VBS topologies are providing a stress test of perturbative QCD
 - Crucial to understanding the background modeling and to make public the relevant information! What do theorist need?

VBS measurements are still in their infancy!

- Lots of new results in preparation with full run-2 data
- For "precision" measurement, need to improve signal and background modeling uncertainties

Backup

EWK WZjj production WZjj EW 26 % tZj+VVV $W^{\pm}Z \rightarrow \ell \nu \ell \ell$ tt+V4 % Misid. leptons 5% Signal extraction strategy ZZ Boosted Decision Tree trained on simulation events, to separate 8 % WZjj-EW from backgrounds m_{jj} , N_{jets} , p_T^{j1} , p_T^{j2} , η^{j1} , $\Delta \eta_{jj}$, $\Delta \phi_{jj}$ 15 discriminant variables used $Iy_{I,W} - y_Z I$, p_T^W , p_T^W , η^W , m_T^{WZ} $\Delta R(i1, Z), R_{pT}^{hard}, \zeta_{lep}$ WZjj QCD Simultaneous fit of BDT in signal region with 3 Control region 54 % regions (WZ QCD, ZZ and tZj) **Observation !!** BDT using 15 discriminant variable **Results:** 45 E Events / 0.2 ATLAS Data Observed (expected with Sherpa) 40 W[±]Z-EW s = 13 TeV, 36.1 fb⁻¹ W[±]Z-QCD significance is 5.3σ (3.2 σ) WZji SR ZΖ 35 E Misid. leptons tt_V 30Ē tZj and VVV ++++ Tot. unc. Fiducial cross section measurement 25 E **EWK WZ** 20 E $\sigma_{WZjj-EW}^{\text{fid.}} = 0.57 \,{}^{+0.14}_{-0.13} \,(\text{stat.}) \,{}^{+0.05}_{-0.04} \,(\text{exp. syst.}) \,{}^{+0.05}_{-0.04} \,(\text{mod. syst.}) \,{}^{+0.01}_{-0.01} \,(\text{lumi.}) \,\text{fb}$ 15È 10 E LO Sherpa cross-section (No EW/QCD interference) 5 $\sigma_{WZii-EW}^{\text{fid., Sherpa}} = 0.321 \pm 0.002 \,(\text{stat.}) \pm 0.005 \,(\text{PDF})_{-0.023}^{+0.027} \,(\text{scale}) \,\text{fb},$ -0.5 0.5 -1 0 **BDT Score**

[arXiv:1812.09740]

EWK same charge WW production w±₩± →ℓvℓv

Best EWK/QCD over background ratio!

- Main background WZ QCD mediated production:
 - Normalization taken from data
 - Shape taken from simulation
 - Theory uncertainties applied (PDF, scale, shower)

Observation !!

Observed (expected with Sherpa) significance is 6.5σ (4.4 σ)

Why Vector Boson scattering is interesting?

- Test of electroweak sector and EW Symmetry Breaking
- Complementary to "direct" Higgs boson property studies
- Differences in this sector will be indications of new physics

Why Vector Boson scattering is interesting?

Why Vector Boson scattering is interesting?

Testing the electroweak sector and EWSymmetry BreakingATLAS

Testing the electroweak sector and EWSymmetry BreakingATLAS

