A review of projections for VBS measurements

at the HL-LHC with ATLAS

European Research Council Established by the European Commission Kristin Lohwasser on behalf of the ATLAS collaboration University of Sheffield

The University Of Sheffield.

VBS at Snowmass, January 25th 2021

ATLAS at the HL-LHC: What to expect?

- Upgrade during Long Shutdown 3 to prepare for HL-Lumi:
 - \rightarrow prepare for increased pile-up and radiation
 - \rightarrow maintain detector performance
 - \rightarrow unlock physics potential
- Prospects updated (European Strategy for Particle Physics)
- Expected integrated luminosity: 3000 fb⁻¹
- Substantial detector upgrades (see talk K. Potamianos, Tuesday 14.50):
 - \rightarrow trigger: 10 kHz bandwidth:
 - \rightarrow all-silicon tracker extends up to $|\eta| = 4.0$
 - → high granularity timing (2.4<| η | <4.0, 30 ps)
 - → extended coverage
 - \rightarrow decreased trigger p_T thresholds
 - → suppression of pile-up

- > Collection of ATLAS+CMS prospects in HL-LHC Yellow report: https://cds.cern.ch/record/2651134 (2019)
 - [1] The W+W- scattering cross section (ATL-PHYS-PUB-2018-052)
 - [2] VBS in WZ (fully leptonic) (ATL-PHYS-PUB-2018-023)
 - [3] Electroweak vector boson scattering in the WW/WZ → ℓvqq final state (ATL-PHYS-PUB-2018-022)
- > ECFA HL-LHC (2016/17)

CERT follow Reports Annual
Physics of the Life Life and
Perspectives for the HE-LHC
A. Solicas B. Klampere A. B. Marce A. Nanci G. Gam B. A. Madrimen
()

- [4] Studies on the impact of an extended Inner Detector tracker and a forward muon tagger on W±W± scattering in pp collisions (ATL-PHYS-PUB-2017-023)
- [5] Measurement prospects for VBF H → WW^(*) → evµv (ATL-PHYS-PUB-2016-018)
- [6] Prospective results for vector-boson fusion-mediated Higgs-boson searches in the four lepton final state at the High Luminosity Large Hadron Collider (ATL-PHYS-PUB-2016-008)
- > Snowmass on the Mississippi (2013)
 - [7] Studies of Vector Boson Scattering And Triboson Production with an Upgraded ATLAS Detector at a High-Luminosity LHC (ATL-PHYS-PUB-2013-006)
- > European Strategy for Particle Physics (2012)
 - [8] Studies of Vector Boson Scattering with an Upgraded ATLAS Detector (ATL-PHYS-PUB-2012-005)

WW production (dilepton channel) [1,4,7,8]

Same-sign WW is one of the most studied process for HL-LHC because of its sensitivity to longitudinal scattering amplitude of VV

WWjj EWK with scattering topology

 \rightarrow small signal with large backgrounds

WWjj EWK without scattering topology

WWjj QCD

• Two recent results (\sqrt{s} = 14 TeV) with focus on:

- \rightarrow comparison of detector scenarios
- → extraction of longitudinal compoment

WW: Detector study (dilepton channel) [4]

Scenarios considering improvements from new ITK tracking detector):

	Applied range for	Lepton η
	jet vertex requirement	range
No forward tracking	$ \eta_{\rm jet} \le 2.5$	$ \eta_{e,\mu} \le 2.7$
Forward tracking for jets only	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 2.7$
Forward tracking for jets and electrons	$ \eta_{\rm jet} \le 3.8$	$ \eta_e \le 4.0, \eta_\mu \le 2.7$
Forward tracking for jets, electrons and muons	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 4.0$

Selection (based on 8 TeV)

- \rightarrow 2 leptons (p_T>25 GeV)
- → m($\ell \ell$)>20 GeV, Δ (m_{ee},m_z)>10 GeV
- $\rightarrow E_{T}^{miss} > 40 \text{ GeV}$
- → jet separation $\Delta \eta$ (j,j) > 2.4
- \rightarrow jet p_T > 30 GeV (70 GeV w/o vtx tag)
- $\rightarrow m_{ii} > 500 \text{ GeV}$
- \rightarrow no additional low-p_T leptons
- → lepton centrality ζ >0

Leptons within the rapidity range spanned by the jets

 $\zeta = \min[\min(\eta_{\ell 1}, \eta_{\ell 2}) - \min(\eta_{j 1}, \eta_{j 2}), \max(\eta_{j 1}, \eta_{j 2}) - \max(\eta_{\ell 1}, \eta_{\ell 2})]$

WW: Detector study (dilepton channel) [4]

Scenarios considering improvements from new ITK tracking detector):

	Applied range for	Lepton η	
	jet vertex requirement	range	
No forward tracking	$ \eta_{\rm jet} \le 2.5$	$ \eta_{e,\mu} \le 2.7$	
Forward tracking for jets only	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 2.7$	
Forward tracking for jets and electrons	$ \eta_{\rm jet} \le 3.8$	$ \eta_e \le 4.0, \eta_\mu \le 2.7$	
Forward tracking for jets, electrons and muons	$ \eta_{\rm jet} \le 3.8$	$ \eta_{e,\mu} \le 4.0$	

Selection (based on 8 TeV)

- \rightarrow 2 leptons (p_T>25 GeV)
- → m($\ell \ell$)>20 GeV, Δ (m_{ee},m_z)>10 GeV
- $\rightarrow E_{\tau}^{miss} > 40 \text{ GeV}$
- → jet separation $\Delta \eta$ (j,j) > 2.4
- \rightarrow jet p_T > 30 GeV (70 GeV w/o vtx tag)
- → m_{ii} > 500 GeV
- \rightarrow no additional low-p_T leptons
- \rightarrow lepton centrality ζ >0

Simplifications:

- → Simulation of only WW and WZ (QCD+EWK)
- → non-dominant backgrounds estimated (8 TeV result)
- → Particle-level objects smeared based on full-GEANT4
- → 15% systematics (8 TeV result)

WW: Detector study (dilepton channel) [4]

- Larger acceptance with extended detectors
- Estimated significance of Z₀=17 19

 $N_{\text{sig}} + N_{\text{bkg}} + \sum_{i=0}^{\text{bkg}} (N_i \sigma_i)$ $\Delta \mu$ $N_{\rm sig}$ μ $\Delta \mu$ $\Delta \mu$ μ Combined ee $e\mu$ μe $\mu\mu$ 11%9.8%6.1%4.5%

10%

9.8%

8.9%

11%

11%

10%

No forward tracking18%Forward tracking for jets only19%Forward tracking for jets and electrons18%Forward tracking for jets, electrons and muons18%

*
$$m_{\text{WW,T}} = \sqrt{\left(E_{\text{T}}^{\ell\ell} + E_{\text{T}}^{\text{miss}}\right)^2 - \left|p_{\text{T}}^{\ell\ell} + E_{\text{T}}^{\text{miss}}\right|^2}$$
, where $E_{\text{T}}^{\ell\ell} = \sqrt{\left|p_{\text{T}}^{\ell\ell}\right|^2 + m_{\ell\ell}^2}$

Kristin Lohwasser | VBS at Snowmass | 25.1.2021 | 7

6.2%

6.2%

5.1%

4.6%

4.6%

4.0%

WW Update: Optimized selection [1]

- Added full suite of backgrounds (VV,VVjj, V+jets, top)
- Optimized selection using longitudinal component as signal (though mostly serves to reject more QCD)

Selection requirement	Selection value
Signal lantan kinamatiaa	$p_{\rm T} > 28 \text{ GeV}$ (leading lepton)
Signal lepton kinematics	$p_{\rm T} > 25 \text{ GeV}$ (subleading lepton)
Tag ist kinematics	$p_{\rm T}$ > 90 GeV (leading jet)
Tag jet kinematics	$p_{\rm T} > 45 \text{ GeV} \text{ (subleading jet)}$
Dilepton separation and charge	Exactly two signal leptons with $\Delta R_{\ell,\ell} \ge 0.3$, $q_{\ell_1} \times q_{\ell_2} > 0$
Dilepton mass	$m_{\ell\ell} > 28 \text{ GeV}$
Z_{ee} veto	$ m_{ee} - m_Z > 10 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 40 { m ~GeV}$
Jet selection and separation	at least two jets with $\Delta R_{\ell,j} > 0.3$
Number of b-tagged jets	0
Dijet rapidity separation	$\Delta \eta_{j,j} > 2.5$
Number of additional preselected leptons	0
Dijet mass	$m_{jj} > 520 \text{ GeV}$
Lepton centrality	$\zeta > -0.5$

Increase momentum thresholds

→ increase invariant jet mass requirement

→ relax centrality critrium

WW Update: Opimized selection [1]

5000

WW Update: Extraction of cross-section [1]

- Statistical uncertainty on expected cross-section improves dramatically with luminosity
- Only weak dependence of systematic uncertainty on the luminosity
- Total uncertainty of 6% is expected \rightarrow compatible with earlier study

WW Update: Extraction of longitudinal scattering [1]

Two-bin likelihood fit to extract longitudinal scattering signal

 The expected significance is 1.8 σ, with an expected precision of 47% on the measurement

Considerable improvements achievable using MVA techniques

WW: earlier studies (dilepton channel) [7,8]

- Investigating BSM models:
 - → a4 (EW chiral Lagrangian, weak isospin conserving)
 - → **fs0** (Dim-8 operator) (f_{s0} related to a4)
- Main backgrounds either ttbar (constaints from low mass spectrum) or WZ (newer analysis)
- Systematics not discussed (for [7] lepton charge mis-ID from 8 TeV data study used to scale opposite sign WW bkg)

Doromator	dimension	channel	A [ToV]	300	fb ⁻¹	3000) fb ⁻¹
r ai ainetei	unnension	Channel		5σ	95% CL	5σ	95% CL
$c_{\phi W}/\Lambda^2$	6	ZZ	1.9	34 TeV ⁻²	20 TeV ⁻²	16 TeV ⁻²	9.3 TeV ⁻²
f_{S0}/Λ^4	8	$W^{\pm}W^{\pm}$	2.0	$10 {\rm TeV^{-4}}$	6.8 TeV^{-4}	4.5 TeV^{-4}	0.8 TeV^{-4}
f_{T1}/Λ^4	8	WZ	3.7	1.3 TeV ⁻⁴	0.7 TeV^{-4}	$0.6 {\rm TeV^{-4}}$	$0.3 {\rm TeV^{-4}}$
f_{T8}/Λ^4	8	Ζγγ	12	0.9 TeV^{-4}	0.5 TeV^{-4}	0.4 TeV^{-4}	$0.2 {\rm TeV^{-4}}$
f_{T9}/Λ^4	8	Ζγγ	13	2.0 TeV^{-4}	$0.9 { m TeV}^{-4}$	0.7 TeV^{-4}	0.3 TeV^{-4}

WZ: (fully leptonic channel) [2,7]

Includes High Granularity Timing detector and detailed studies on pile-up rejections (0.5% vs 2% nominal)

All major detector effects are included (mostly parametrized):

- \rightarrow Energy resolution, ID and trigger efficiencies for leptons and jets
- \rightarrow Pile-up added with < μ >=200
- \rightarrow "fake" probability for jets to be reconstructed as electrons
- \rightarrow jets below 100 GeV and $|\eta| < 3.8$ associated with hard scatter using track-confirmation
- → Smearing of missing energy
- Expected integrated luminosity: 3000 fb⁻¹ with $\sqrt{s} = 14 \text{ TeV}$
- Main objectives:
 - \rightarrow Study selections (run-2 benchmark)
 - \rightarrow Polarization studies
 - → aQGC studies

WZ: Selection studies (fully leptonic channel) [2]

- Different selections:
 - → **Run-2 optimised** (only central leptons, $|\eta| < 2.5$, forward jet $p_{\tau} > 70$ GeV)

→ ATLAS HL-LHC setting

(increased acceptance for central jets (lower pT threshold))

→ Yellow Report settings

(baseline to compare within HL-LHC YR to other channels)

→ Different detector settings

(same cuts, different efficiencies, either using HGTD or high PU rejection)

→ Optimized BDT selection (25 variables to get best possible results)

WZ: Selection studies (fully leptonic channel) [2]

→ Uncertainty dominated by jet-related syst and WZ QCD background
 → better control through further control regions in data

WZ: Polarization studies (fully leptonic channel) [2]

Express differential cross sections as function of polarization states (L-eft / R-ight and longitudinal 0)

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{W^{\pm}}^{*}} = \frac{3}{8} FL(1 \mp \cos\theta_{W}^{*})^{2} + \frac{3}{8} FR(1 \pm \cos\theta_{W}^{*})^{2} + \frac{3}{4} F0(1 - \cos\theta_{W}^{*2}),$$
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{Z}^{*}} = \frac{3}{8} FL(1 + 2A\cos\theta_{Z}^{*} + \cos\theta_{Z}^{*2}) + \frac{3}{8} FR(1 - 2A\cos\theta_{Z}^{*} + \cos\theta_{Z}^{*2}) + \frac{3}{4} F0(1 - \cos\theta_{Z}^{*2}),$$

 $\cos\theta^*$ refers to decay angle of the lepton (or anti-lepton forW+) w/r to the boson direction in the WZ rest-frame

- Extracted using templates
- Exp. Sig. of F0 for single boson: 0.5-3.5 (different selections + ATLAS/CMS combination)

WZ: quartic coulings (fully leptonic channel) [7]

H → WW(*): projections (dilepton channel) [5]

• Investigation of three detector scenarios with $\sqrt{s} = 14$ TeV – $<\mu>=200$

Name	Cost (MCHF)	Tracking η coverage	Quality of b-jet identif.
Reference	275	4.0	Excellent
Middle	230	3.2	Good
Low	200	2.7	Satisfactory

Using 8 TeV MC samples scaled to 14 TeV cross-section

- Performance for leptons from 8 TeV full detector simulation
- Missing ET and jet performance (PU rejection) from parametrization studies

Background uncertainties assumed to	be
reduced w/r to Run-2	
Signal: size is varied	

Syst. unc.	ggF (%)	VBF (%)
QCD N _{jet} cross-section	43	1
QCD acceptance	4	4
PDF	8	3
UE/PS	9	3
Total	44	6

	$N_{\rm jet} \ge 2$			
Bkg. process	14 TeV (%)	Run-1 (%)		
WW	10	30		
VV	10	20		
tī	10	33		
tW/tb/tqb	10	33		
Z+jets	10	20		
W+jets	20	30		

$H \rightarrow WW(*)$: projections (dilepton channel) [5]

Restriction to cut-based analysis

Category	$N_{\text{jet}} \ge 2$
Pre-selection	Two isolated leptons (one <i>e</i> and one μ) with opposite charge Leptons with $p_{\rm T}^{\rm lead} > 25-28$ GeV and $p_{\rm T}^{\rm sublead} > 15$ GeV $m_{\ell\ell} > 10$ GeV
Jet-corrected-track- $E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 20 { m ~GeV}$
General selection	$p_T^{\text{jet}} > 70 \ (60) \text{ GeV lead (sublead)}$ $N_{\text{b-jet}} = 0 \ (\text{before pile-up jet removal})$ $p_T^{\text{tot}} < 20 \ \text{GeV}$ $Z/\gamma^* \rightarrow \tau\tau \text{ veto (Collinear approx. } m_{\tau\tau} < 50 \ \text{GeV})$
VBF topology	$m_{\rm jj} > 1250 \text{ GeV}$ and $ \eta_j > 2.0$, opposite hemisphere No jets ($p_{\rm T} > 30 \text{ GeV}$) in rapidity gap (CJV) Require both ℓ in rapidity gap
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$ topology	$ \begin{split} m_{\ell\ell} &< 60 \text{ GeV} \\ \Delta \phi_{\ell\ell} &< 1.8 \\ m_{\mathrm{T}} &< 1.07 \times m_{H} \end{split} $

H → WW(*): projections (dilepton channel) [5]

Scoping scenario	Δ_{μ}			Sign	ifican	$ce(\sigma)$
Signal unc.	Full	1/2	None	Full	1/2	None
Reference	0.20	0.16	0.14	5.7	7.1	8.0
Middle	0.25	0.21	0.20	4.4	5.2	5.4
Low	0.39	0.32	0.30	2.7	3.3	3.5

Full, $\frac{1}{2}$, None \rightarrow size of signal theory uncertainty

H → WW(*): projections (dilepton channel) [5]

Full, $\frac{1}{2}$, None \rightarrow size of signal theory uncertainty

$H \rightarrow 4\ell$: projections [6]

- Same Reference / Middle / Low scenarios investigated as for $H \rightarrow WW^{(*)}$
- Results obtained using a BDT to target VBF final state
- More realistic (and promising) channel for HL-LHC

Statistical uncertainty only								
Scoping scenario VBF + $2j$ events $ggF + 2j$ events $qqZZ + 2j$ events Z_0								
Reference 192 (168) 287 (140) 39 (16)				10.2	0.152			
Middle	218 (167)	454 (155)	69 (15)	9.5	0.157			
Low	259 (159)	803 (182)	124 (21)	8.6	0.165			
Statisti	cal uncertainty + (QCD scale var. un	certainty (S-T meth	od)				
Scoping scenario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$			
Reference 192		287	39	7.2	0.182			
Middle	218	454	69	6.9	0.192			
Low	259	803	124	6.2	0.208			

$H \rightarrow 4\ell$: projections [6]

Scoping scenario VBF + 2i events

Reference

Middle

Low

Same Reference / Middle / Low scenarios investigated as for $H \rightarrow WW^{(*)}$

- Results obtained using a BDT to targ **VBF** final state
- More realistic (and promising) cha for HL-LHC as it is still stats domin

				-				
s obtained using a BDT to target nal state				Production bin		$(\sigma \cdot \mathcal{B})/(\sigma \cdot \mathcal{B})_{\mathrm{SM}}$ Observed		
ealis	stic (and pro	omising) ch			$1.01 \pm 0.08 \pm 0.03 \pm 0.02$			
-LHC as it is still stats dominated						$0.96 \pm 0.10 \pm 0.03 \pm 0.03$		
				VBF		$1.21 \pm 0.44 \substack{+0.13 \\ -0.08 } \substack{+0.07 \\ -0.05}$		
			-	VH		1.44 ^{+1.13} +0.21 +0.24 -0.90 -0.14 -0.17		
				ttH		$1.7^{+1.7}_{-1.2} \pm 0.2 \pm 0.2$		
	Statist	tical uncertainty o	only			(stat)+(exp)+(th)		
enario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$	(3101.) (0.0.) (11.)		
nce	192 (168)	287 (140)	39 (16)	10.2	0.152	Eur.Phys.J.C 80		
le	218 (167)	454 (155)	69 (15)	9.5	0.157	(2020) 10, 957		
,	259 (159)	803 (182)	124 (21)	8.6	0.165			
Statisti	cal uncertainty + (QCD scale var. un	certainty (S-T meth	od)				
enario	VBF + 2j events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$			
nce	192	287	39	7.2	0.182			
le	218	454	69	6.9	0.192			
,	259	803	124	6.2	0.208			

Scoping scenario	VBF + $2j$ events	ggF + 2j events	qqZZ + 2j events	Z_0	$\Delta \mu / \mu$		
Reference	192	287	39	7.2	0.182		
Middle	218	454	69	6.9	0.192		
Low	259	803	124	6.2	0.208		
			Kristin Lohy	vasser	I VRS at	Snowmas	s 2

How well have the historical projections aged?

- "Historical" = anything we can test / something we have by now measured
 mainly predicted before LHC data taking
 - \rightarrow mainly predicted before LHC data taking
- ATLAS technical design report
 - $\rightarrow\,$ only studies in there on dibosons
 - \rightarrow nothing on VBS
 - \rightarrow additional difficulty from 7,8 TeV runs
- Agree within a factor of ~2 (sqrt(3)=1.7) → quite on point

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS /CONFNOTES/ATLAS-CONF-2016-043/ (13/fb at 13 TeV, 20/fb at 8 TeV) WZ

Dataset	Coupling	Expected	Observed
$13 { m TeV}$	$\begin{array}{c} \Delta g_1^Z \\ \Delta \kappa_1^Z \\ \lambda^Z \end{array}$	$\begin{matrix} [-0.017; \ 0.032] \\ [-0.18; \ 0.24] \\ [-0.015; \ 0.014] \end{matrix}$	$\begin{matrix} [-0.016; \ 0.036] \\ [-0.15; \ 0.26] \\ [-0.016; \ 0.015] \end{matrix}$
8 and 13 TeV	$\Delta g_1^Z \ \Delta \kappa_1^Z \ \lambda^Z$	$\begin{matrix} [-0.014; \ 0.029] \\ [-0.15; \ 0.21] \\ [-0.013; \ 0.012] \end{matrix}$	$\begin{matrix} [-0.015; \ 0.030] \\ [-0.13; \ 0.24] \\ [-0.014; \ 0.013] \end{matrix}$

https://cds.cern.ch/record/391177 ATLAS detector and physics performance : Technical Design Report, 2 best possible parameters using Wy / WZ

Table 16-2 The envisaged statistical precision from single parameter fits for a given coupling, assuming an integrated luminosity of 30 fb⁻¹. The limits are presented for the different sets of variables and the ideal case denote fits at generator level using all available information.

Coupling	95% C.L. (m _{Wγ′} η*)	95%C.L. (p _T ^γ , θ*)	95%C.L. Ideal case	
$\Delta \kappa_{\gamma}$	0.035	0.046	0.028	
λγ	0.0025	0.0027	0.0023	
Δg_1^Z	0.0078	0.0089	0.0053	
$\Delta \kappa_Z$	0.069	0.100	0.058	
λ_Z	0.0058	0.0071	0.0055	

Systematic uncertainty from PDF/scale

Have reviewed current HL-LHC projections

Quite sophisticated: reconstruction level, full backgrounds

Where comparisons are possible:
 → Projections probably rather on the pessimistic side!
 e.g. because no BDT was used

Few historical comparisons possible → again looks rather good in terms of how they have aged

Backup slides.

WZ BDT

mjj	ranking	1st eigenvalue of the 3-leading-jet sphericity
PT sublead jet		tensor
Transv. Mass of leading jets		$ \eta $ of Z boson
sum(pT, lep) / (Ej1 + Ej2)		$ \eta $ of the third lepton
PT leading jet	7	1st eigenvalue of the lepton sphericity tenso
centrality		PT leading lepton
[Sum(pT(lep)) / Sum(E(lep)] / [Sum(pT(j) / S	Sum(E(jet))]	$ \eta $ of the leading lepton
Largest invariant with an extra jet		
Delta R (angle in space between leading jets		
1 st eigenvalue of leading jets spericity tensor		
Transverse mass of WZ system		
Mass of WZ system		
ŋj1 - ŋj2		
Angle in WZ restframe of the leading jet with	the Z axis	
φj1 - φj2		
[Sum(pT(j) / Sum(E(jet))]		
η of the leading jet		