New physics at LH-LHC with VBS signatures

VBS@Snowmass, Zoom State University

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

26 January 2021

1 / 41

thank you for the invitation!

thank you for joining this week!

Acknowledgments, Apologies, and Disclaimers

finite time constraints \implies many omissions

• "BSM with VBS" is too rich for 25'+5'. okay, since many talks:

```
EFTs (Ambrosio and Szleper); anomaly-hunting (Li); axions/ALPs (De Troconiz); Higgs couplings (Kotwal); new colliders (many); see also past VBSCan meetings
```

Today's topic: "νBSM with VBS"

```
Disclaimer: Snowmass RF4 topical group convener for LNV/LFV@colliders
```

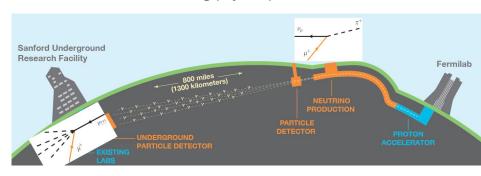
• Focus on $\gamma\gamma$, $W^{\pm}\gamma$, $W^{\pm}Z$, and $W^{\pm}W^{\pm}$ scattering at the HL-LHC

```
\implies \sqrt{s} = 13 - 14 \text{ TeV} \text{ and } \mathcal{L} = 1 - 5 \text{ ab}^{-1}
```

source material:

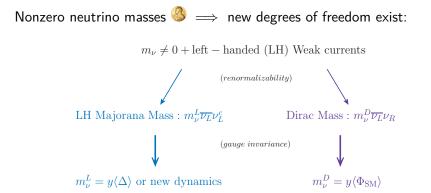
1 Reviews on ν mass models at colliders

```
 w/\ Y.\ Cai,\ T.\ Han,\ and\ T.\ Li\ [1711.02180];\ w/\ S.\ Pascoli\ and\ C.\ Wieland\ [1812.08750]
```


2 European Strategy Update 2019 chapter on ν mass models

```
w/ T. Han, T. Li, X. Marcano, S. Pascoli, C. Weiland [1812.07831]
```

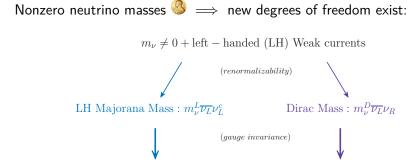
Input for 2021 Snowmass (link) and newer (pandemic-era) results


R. Ruiz - IFJ PAN uBSM with VBS 3 / 41

the big physics picture

 ν oscillations \implies evidence of ν masses!

Nu Masses and New Particles

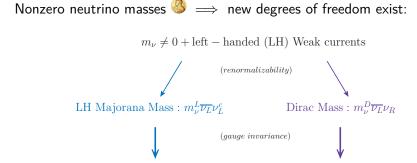


 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

[Ma'98]

Nu Masses and New Particles

 $m_{\nu}^{L} = y\langle \Delta \rangle$ or new dynamics


 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

New particles can be charged under new or old gauge interactions

[Ma'98]

Nu Masses and New Particles

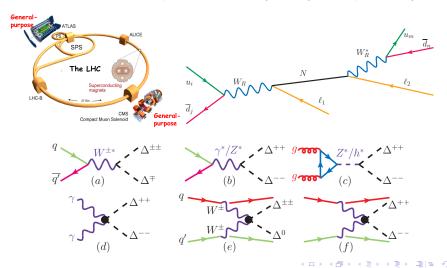
 $m_{\nu}^{L} = y\langle \Delta \rangle$ or new dynamics

$m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles!

- New particles can be charged under new or old gauge interactions
- New particles must couple to h or L, often inducing processes that do not conserve lepton number (LNV) and/or lepton flavor (LFV)

R. Ruiz - IFJ PAN uBSM with VBS 5/41

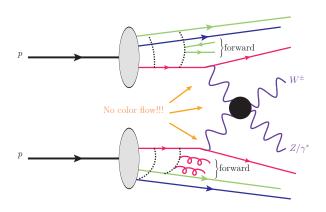
[Ma'98]


models that explain tiny neutrino masses (Seesaw models)

are testable

models that explain tiny neutrino masses (Seesaw models)

are testable, especially at colliders, through a variety of mechanism


for a review, see w/ Y. Cai, T. Li, and T. Han [1711.02180] as well as w/ Pascoli, et al [1812.08750]

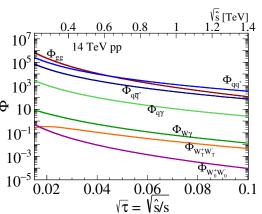
R. Ruiz - IFJ PAN ν BSM with VBS 6/41

so why electroweak VBS/VBF?

EW boson scattering/fusion is special

Abscence of central color flow \implies unusual topology for high- $p_{\mathcal{T}}$ physics

[Dokshitzer, Khoze et al ('86); Barger, Han, et al, PRD ('91) + PLB ('95); Bjorken, PRD ('94)]

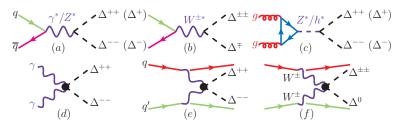

- E.g., forward jets, rapidity gap, high-scale invariants $m_{jj}, M_{VV} \gg M_V$
- Each is a powerful background discriminant

 For new physics searches, VV' scattering gives access to spin, isospin, and QED configurations not accessible by, e.g., qq', $q\overline{q}$, and gg scattering

ullet Benefits compensated by a smaller VV' parton luminosity

See Xie's talk on EW boson PDFs!

$$\Phi_{ij}(au) = \int_{ au}^{1} rac{d\xi}{\xi} f_i(\xi) f_j\left(rac{ au}{\xi}
ight)$$


◆ロ > ◆部 > ◆き > ◆き > き | を | り へ ©

and now for a few results!

$\gamma\gamma$ and $W^{\pm}Z$ scattering

with exotically charged Higgs bosons $\Delta^{\pm\pm}, \Delta^{\pm}$

(Type II Seesaw)

. Ruiz - IFJ PAN uBSM with VBS u11 / 41

The Type II Seesaw Mechanism generates neutrino masses without hypothesizing right-handed neutrinos

• Important example that $m_{\nu} \neq 0 \not\Rightarrow$ that ν_R exist

R. Ruiz - IFJ PAN

The Type II Seesaw Mechanism generates neutrino masses without hypothesizing right-handed neutrinos

• Important example that $m_{\nu} \neq 0 \not\Rightarrow$ that ν_{R} exist

Hypothesize a scalar $SU(2)_L$ triplet with lepton number L=-2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi^\dagger \hat{\Delta} \cdot \Phi^\dagger + \text{H.c.} \Big)$$

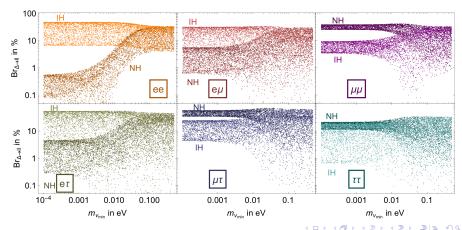
The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\sqrt{2}\langle\hat{\Delta}
angle= extbf{v}_{\Delta}pproxrac{\mu_{h\Delta} extbf{v}_{
m EW}^2}{\sqrt{2}m_{\Delta}^2}$$

which leads to left-handed Majorana masses for neutrinos

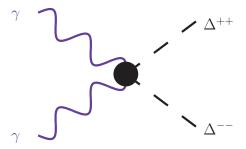
$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{L^{c}} \hat{\Delta} L = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \left(\overline{\nu^{jc}} \quad \overline{\ell^{jc}} \right) \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} v^{i} \\ \ell^{i} \end{pmatrix}$$

$$\ni -\frac{1}{2} \left(\sqrt{2} y_{\Delta}^{ij} v_{\Delta} \right) \overline{\nu^{jc}} \nu^{i}$$


$$= m^{ij}$$

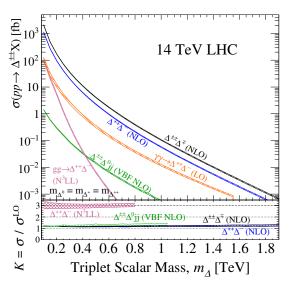
Fewer free parameters \implies richer experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others


• E.g., Δ^{\pm} , $\Delta^{\pm\pm}$ branching rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

$$\mathsf{BR}(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim y_\Delta^{ij} \sim (U_{\mathrm{PMNS}}^* \tilde{m}_\nu^{\mathrm{diag}} U_{\mathrm{PMNS}}^{\dagger})_{ij}$$

. Ruiz - IFJ PAN uBSM with VBS 13 / 41


photon fusion

 $\gamma\gamma \to \Delta^{++}\Delta^{--}$ is wickedly cool!

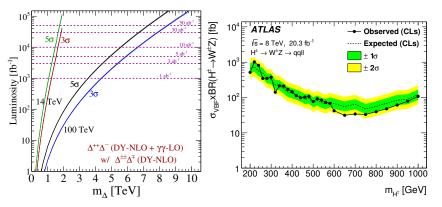
- Elastic+inelastic terms: as $p_T^{j_F}/E^{j_F} \to 0$, recover diffractive limit $j_F + X_B \to p$

- Subleading but ultra peripheral collisions have tiny backgrounds
- LO+Pythia8* can match γ to $q \rightarrow \gamma q$ splitting, i.e., match to forward jets
- Many modern γ PDFs on the market these days. (See backup for comparison.)

 $[\]hbox{``For details, see home.thep.lu.se/ torbjorn/pythia81html/SpacelikeShowers.html'}$

 ◆□ → ◆□ → ◆□ → ◆□ → □ □ □

 VBS
 15 / 41


R. Ruiz - IFJ PAN uBSM with VBS

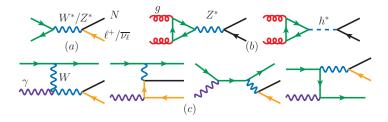
(L) Projections for $q\overline{q} + \gamma\gamma$ at $\sqrt{s} = 14$ TeV and 100 TeV!

w / Fuks and Nemevšek [1912.08975]

ATLAS [1503.04233]

(R) Limits at
$$\sqrt{s}=8$$
 TeV for $W^\pm Z \to \Delta^\pm \to W^\pm Z$

- At LHC with $\mathcal{L}=5~{\rm ab^{-1}}$, 3σ sensitivity up to $m_{\Delta}\sim 1.5~{\rm TeV}$
- Warning: projections can be improve for specific parameter spaces


a Snowmass task if anyone is interested!

R. Ruiz - IFJ PAN ν BSM with VBS 16/41

$W^{\pm}\gamma$ and $W^{\pm}W^{\pm}$ scattering

with heavy Dirac and Majorana neutrinos N

(Low-scale Type I Seesaw)

R. Ruiz - IFJ PAN

uBSM with VBS

17 / 41

Heavy neutrino mixing for non-experts

The Type I Seesaw Mechanisms generate neutrino masses by hypothesizing a few right-handed neutrinos ν_R

depending on assuptions, $m_{
u}\sim \Lambda_{LNV}$ or v^2/Λ_{LNV} . details are not so important right now.

After EWSB, ν_{ℓ} and ν_{R} have same quantum numbers \implies mixing!

Heavy neutrino mixing for non-experts

The Type I Seesaw Mechanisms generate neutrino masses by hypothesizing a few right-handed neutrinos ν_R

depending on assuptions, $m_{\nu} \sim \Lambda_{LNV}$ or v^2/Λ_{LNV} . details are not so important right now.

After EWSB, ν_{ℓ} and ν_{R} have same quantum numbers \implies mixing!

Example: In a two-state system, mixing between chiral eigenstates and mass eigenstates is given by unitary transformation/rotation

$$\underbrace{\begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}}_{\text{chiral basis}} = \underbrace{\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}}_{\text{mixing}} \underbrace{\begin{pmatrix} \nu_1 \\ N_2 \end{pmatrix}}_{\text{mass basis}}$$

Decompose chiral/interaction states into mass states using:

$$\underbrace{\left| \frac{\nu_L}{\nu_L} \right\rangle}_{\text{interaction basis}} = \cos \theta \underbrace{\left| \frac{\nu_1}{\nu_1} \right\rangle}_{\textit{light}} + \sin \theta \underbrace{\left| \frac{N_2}{N_2} \right\rangle}_{\textit{heavy}}$$

◄□▶◀률▶◀불▶◀불▶ 활章 쒸٩○

Heavy neutrino mixing for non-experts

The Type I Seesaw Mechanisms generate neutrino masses by hypothesizing a few right-handed neutrinos ν_R

depending on assuptions, $m_{\nu} \sim \Lambda_{INV}$ or v^2/Λ_{INV} details are not so important right now.

After EWSB, ν_{ℓ} and ν_{R} have same quantum numbers \implies mixing!

Example: In a two-state system, mixing between chiral eigenstates and mass eigenstates is given by unitary transformation/rotation

$$\underbrace{\begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}}_{\text{chiral basis}} = \underbrace{\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}}_{\text{mixing}} \underbrace{\begin{pmatrix} \nu_1 \\ N_2 \end{pmatrix}}_{\text{mass basis}}$$

Decompose chiral/interaction states into mass states using:

$$\underbrace{|\nu_L\rangle}_{\text{interaction basis}} = \cos\theta\underbrace{|\nu_1\rangle}_{light} + \sin\theta\underbrace{|N_2\rangle}_{heavy} \stackrel{\theta \leqslant 1}{\approx} (1 - \frac{1}{2}\theta^2)|\nu_1\rangle + \theta|N_2\rangle$$

R. Ruiz - IFJ PAN ν BSM with VBS 18 / 41

In practice?

For <u>discovery</u> <u>purposes</u>, no need to complicate life. Take agnostic/pheno. approach with generic $V_{\ell N}$ parametrization and one N mass eigenstate

Atre, Han, Pascoli, Zhang [0901.3589]

$$\underbrace{\nu_{\ell L}}_{\text{flavor basis}} \approx \underbrace{\sum_{m=1}^{3} U_{\ell m} \nu_{m} + V_{\ell m'=4} N_{m'=4}}_{\text{mass basis}}$$

R. Ruiz - IFJ PAN

For <u>discovery</u> <u>purposes</u>, no need to complicate life. Take agnostic/pheno. approach with generic $V_{\ell N}$ parametrization and one N mass eigenstate

Atre, Han, Pascoli, Zhang [0901.3589]

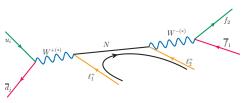
flavor basis
$$\approx \sum_{m=1}^{3} \frac{U_{\ell m} \nu_m + V_{\ell m'=4} N_{m'=4}}{\text{mass basis}}$$

The SM W chiral coupling to **leptons** in **flavor basis** is

$$\mathcal{L}_{\mathrm{Int.}} = -rac{g_W}{\sqrt{2}} \emph{W}_{\mu}^- \sum_{\ell=e}^{ au} \left[\overline{\ell} \gamma^{\mu} \emph{P}_{\emph{L}} \emph{v}_{\ell}
ight] + \mathrm{H.c.}, \qquad ext{where } \emph{P}_{\emph{L}} = rac{1}{2} (1 - \gamma^5)$$

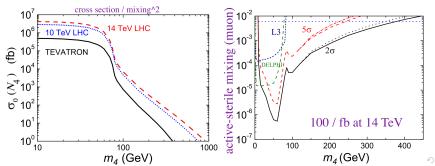
 \implies SM W coupling to N and charged **leptons** in the **mass basis is**

$$\begin{array}{l} \mathcal{L}_{\mathrm{Int.}} = -\frac{g_W}{\sqrt{2}} \, W_{\mu}^- \, \textstyle \sum_{\ell=e}^{\tau} \, \left[\overline{\ell} \gamma^{\mu} P_L \left(\textstyle \sum_{m=1}^3 \, \frac{U_{\ell m} \nu_m}{\nu_m} + \frac{V_{\ell N} \, N}{\nu_m} \right) \right] + \mathrm{H.c.} \end{array}$$


 \implies N is accessible through SM currents

4□ → 4□ → 4 를 → 4 를 → 를| = 40 < 0
 20 / 41

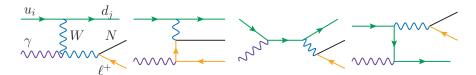
R. Ruiz - IFJ PAN uBSM with VBS


Historically, searches for N with $m_N > M_W$ relied on $(q\bar{q})$ annihilation

Keung & Senjanovic (PRL'83)

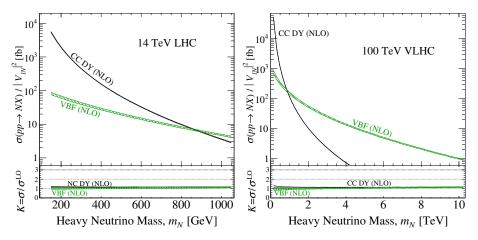
At the LHC, a canonical signature for N: $pp \rightarrow \ell_i^{\pm} \ell_i^{\pm} + nj + \text{ no MET}$

based on seminal works by K&S, del Aguila & Aguilar-Saavedra [0808.2468], and Atre, et al [0901.3589]


R. Ruiz - IFJ PAN

 ν BSM with VBS

21 / 41


How heavy can we go?

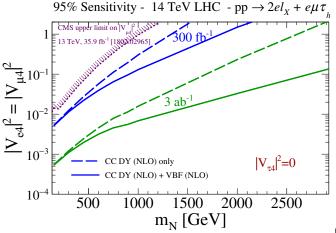
high-mass production mechanisms: $W\gamma$ fusion

 $W\gamma \to N\ell^{\pm}$ is powerful but subtle due to QED singularities and γ PDF

Dev, et al [1308.2209], w/ Alva, Han [1411.7305], w/ Degrande, Mattelaer, Turner [1602.06957]

w/ Pascoli, Weiland [1812.08750]

Again, be careful when choosing γ PDF

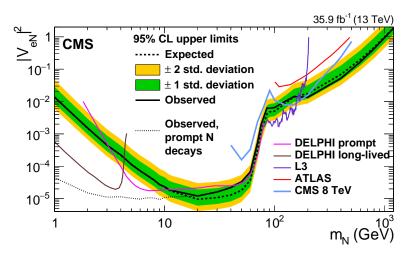

for up-to-date comparison see study w/ Fuks Nemevšek [1912.08975], \bigcirc

Ruiz - IFJ PAN ν BS

uBSM with VBS 24 / 41

How important is $W\gamma$ fusion?

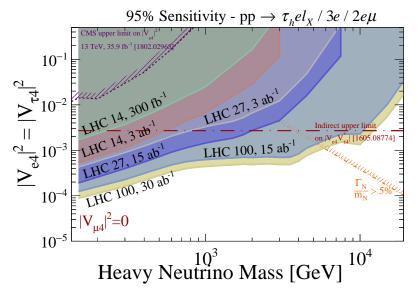
Plotted: LHC 14 sensitivity to active-sterile neutrino mixing (coupling) vs heavy neutrino mass (m_N) in search for $pp \to \mu^{\pm} e^{\mp} \ell_X$ $(\ell_X = e, \mu, \tau_h)$



[1812.08750]

- Dash = CMS-inspired trilepton analysis with only $q\overline{q'}$ annihilation
- Solid = $+W\gamma$ fusion $\implies W\gamma$ drives high-mass sensitivity!

R. Ruiz - IFJ PAN uBSM with VBS 26/41

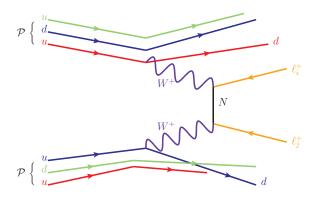

Plotted: LHC 13 limits in search for $pp \rightarrow 3\ell + MET$ $(\ell_X = e, \mu)$

- ullet $W\gamma$ included in CMS trilepton [1802.02965] and dilepton [1806.10905] searches
- ullet ATLAS does not include $W\gamma \Longrightarrow {\sf lower \ high-mass \ sensitivity \ [1905.09787]}$

R. Ruiz - IFJ PAN ν BSM with VBS 27 / 41

A peak at the future.

Improved analysis $+W\gamma \implies$ competitive sensitivity to cLFV at LHC¹


• Specific coupling reach is model-dependent

R. Ruiz - IFJ PAN uBSM with VBS u 29 / 41

Only a few results now. See "big" paper for various flavor, Dirac vs Majorana, and \sqrt{s} permutations [1812.08750] ~ 9.9

How heavy can we go?

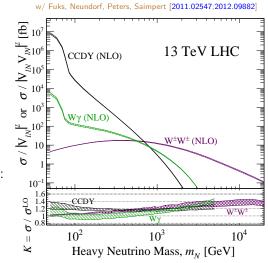
N from $W^{\pm}W^{\pm}$ scattering

R. Ruiz - IFJ PAN

 $W^{\pm}W^{\pm} \to \ell_i^{\pm}\ell_i^{\pm}$ is high-energy version of $0\nu\beta\beta$ decay with $\ell=e,\mu, au$ Dicus, et al (PRD'91)

Plotted: Normalized production rate $(\sigma/|V|^{2})^{(4)}$ vs mass (m_N)

Driven by $W_0^+W_0^+$ scattering


"Low-mass" limit
$$(M_{WW} \gg m_N)$$
: $\hat{\sigma}(W^+W^+ \to \ell^+\ell^+)$

$$\sim g_W^4 |V_{\ell N}|^4 rac{m_N^2}{m_W^4}$$

"High-mass" limit ($M_{WW} \ll m_N$):

$$\hat{\sigma}(W^+W^+
ightarrow rac{\ell^+\ell^+}{m_{e_e}^2}) \ \sim g_W^4 rac{|V_{\ell N}|^4}{m_{e_e}^2} rac{M_{WW}^4}{m_{e_e}^4}$$

Lots of rich phenomenology

 ν BSM with VBS

32 / 41

The collider signature exhibits both LNV and VBS/F characteristics

$$pp \to \mu^{\pm}\mu^{\pm}jj + X$$

- same-sign, high- p_T charged leptons without MET and back-to-back
- forward, high- p_T with rapidity gap
- See backup slides for kinematic distributions at NLO+PS

Built simplified analysis for expedience:

TABLE III. Pre-selection and signal region cuts.

Pre-selection Cuts
$p_T^{\mu_1 \ (\mu_2)} > 27 \ (10) \ {\rm GeV}, \qquad \eta^{\mu} < 2.7, n_{\mu} = 2,$
$p_T^j > 25 \text{ GeV}, \eta^j < 4.5, n_j \ge 2,$
$Q_{\mu_1} \times Q_{\mu_2} = 1$, $M(j_1, j_2) > 700 \text{ GeV}$
Signal Region Cuts
$p_T^{\mu_1}, p_T^{\mu_2} > 300 \text{ GeV}$

TABLE I. Generator-level cross sections [fb] and cuts, μ_f, μ_r scale uncertainty [%], PDF uncertainties [%], and perturbative order for leading backgrounds at $\sqrt{s} = 13$ TeV.

Process	Order	Cuts	$\sigma^{\rm Gen.}$ [fb]	$\pm \delta_{\mu_f,\mu_r}$	$\pm \delta_{\mathrm{PDI}}$
$W^{\pm}W^{\pm}jj$ (QCD)	NLO in QCD	Eq. (4.2)	385	+10% -10%	+1% -1%
$W^{\pm}W^{\pm}jj$ (EW)	NLO in QCD	Eq. (4.2) +	254	+1% -1%	+1%
		diagram removal		-1%	-1%
Inclusive $W^{\pm}V$ (3 $\ell\nu$)	FxFx (1j)	Eqs. (4.3), (4.4)	2,520	+5%	+1%

TABLE IV. Visible signal cross sections (and efficiencies) after applying different selections to the simulated events.

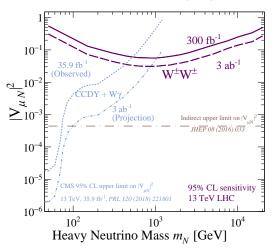
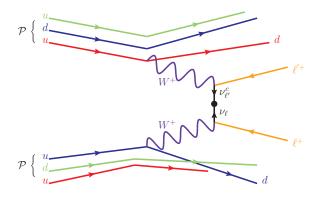

m_N	$\sigma^{\text{Gen.}}$ [fb]	$\sigma^{\text{Pre.}}$ [fb] (A)		σ^{SR} [fb] (ε)	
$150~{ m GeV}$	13.3	3.7	(28%)	0.5	(14%)
$1.5~{ m TeV}$	8.45	3.18	(38%)	1.9	(63%)
5 TeV	1.52	0.58	(38%)	0.46	(79%)
15 TeV	0.190	0.072	(38%)	0.056	(78%)

TABLE V. Expected number of SM background events in the Signal Region at the (HL-)LHC with $\mathcal{L}=300~$ fb⁻¹ (3 ab⁻¹).

Collider	QCD $W^{\pm}W^{\pm}jj$	EW $W^{\pm}W^{\pm}jj$	$W^\pm V(3\ell\nu)$	Total
LHC	0.05	0.52	0.14	0.71
HL-LHC	0.49	5.17	1.40	7.10

R. Ruiz - IFJ PAN ν BSM with VBS 33 / 41

Plotted: LHC 13 sensitivity to active-sterile neutrino mixing (coupling) vs heavy neutrino mass (m_N)



 $W^\pm W^\pm o \ell_i^\pm \ell_j^\pm$ allows direct probe $m_N \sim 1-10$ TeV at $|V|^2 \lesssim 0.1$

• Simplified analysis = room for improvement!

R. Ruiz - IFJ PAN ν BSM with VBS 34 / 41

NEW: $W^{\pm}W^{\pm}$ scattering at dimension five (Weinberg Operator)

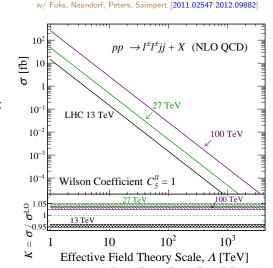
R. Ruiz - IFJ PAN

 $W^{\pm}W^{\pm} \to \ell_i^{\pm}\ell_i^{\pm}$ is high-energy version of $0\nu\beta\beta$ decay with $\ell=e,\mu, au$ Dicus, et al (PRD'91)

Plotted: Normalized production rate $(C_5 = 1)$ vs scale (Λ)

Weinberg operator only SMEFT operator at d=5:

$$\mathcal{L} = \frac{C_5^{\ell\ell'}}{\Lambda} [\Phi \cdot \overline{L}_\ell^c] [L_{\ell'} \cdot \Phi]$$

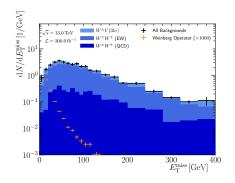

generates/corrects ν mass matrix:

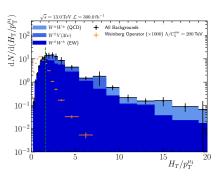
$$m_{\ell\ell'} = C_5^{\ell\ell'} \langle \Phi \rangle^2 / 2\Lambda$$

 $C_{\rm E}^{ee}/\Lambda$ is constrainted by $0\nu\beta\beta$. What about the other $C_5^{\ell\ell'}$?

Driven by $W_0^+ W_0^+$ scattering

$$\hat{\sigma}(W^+W^+
ightarrow\ell^+\ell^+)\sim g_W^4rac{|\mathcal{C}_5^{\ell\ell}|^2}{18\pi\Lambda^2}$$

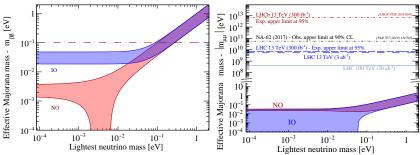



 ν BSM with VBS 36 / 41

The collider signature exhibits both LNV and VBS/F characteristics

$$pp \rightarrow \mu^{\pm}\mu^{\pm}jj + X$$

(L)
$$E_T^{\text{miss}}$$
 (R) $H_T/p_T^{\mu_1}$


 ν BSM with VBS

37 / 41

the big picture

Plotted: Allowed and projected reach of $|m_{\mu\mu}|$ vs lights ν mass

$$|C_5^{\ell\ell'}| \frac{\langle \Phi \rangle^2}{2\Lambda} = |m_{\ell\ell'}| = |\sum_{k=1}^3 U_{\ell k} m_{\nu_k} U_{\ell' k}|$$

With a minimal cuts (= can be improved) $\mathcal{L}=300$ (3000) \mathbf{fb}^{-1} $\Lambda/|C_{\mathbf{F}}^{\mu\mu}| \leq 8.3 \ (13) \ \text{TeV}$

⇒ "light Majorana mass scales" (in flavor space) as small as

$$|m_{\mu\mu}|\gtrsim 7.3~(5.4)~{
m GeV}$$

and is more competative than other experiments!

R. Ruiz - IFJ PAN ν BSM with VBS 39 / 41

Summary

New physics is motivated by many emperical and theoretical observations

ullet Dark matter, naturalness, flavor, u masses

The scattering of EW bosons offers a unique probe of new physics

- access to spin, isospin, and QED configurations not accessible to, e.g., qq', $q\overline{q}$, and gg scattering
- enables direct production of new particles or probe EFT/ NSIs

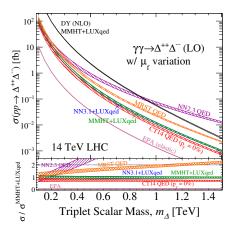
Numerous neutrino mass models can be tested at colliders

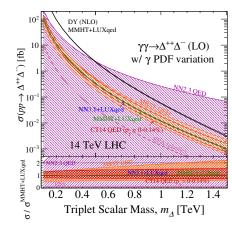
- Lots of encouraging projections for sensitivity at the HL-LHC
- New VBS/VBF analyses ⇒ new territory LNV and cLFV

The **Snowmass Process** is underway!

- Community studies are iterative and we plan to keep up the work!
- Lots not covered todays, so go check out the review! [1711.02180]

R. Ruiz - IFJ PAN ν BSM with VBS 40 / 41




Backup

Photon PDFs

Historically, back-and-forth about importance of $\gamma\gamma \to \Delta^{++}\Delta^{--}$

most PDFs in good agreement with some known exceptions

• Warning: NNPDF 2.3 QED (default in MG5aMC) has poor description of γ PDF; well-known and due to limited statistics (not modeling)

Ruiz - IFJ PAN ν BSM with VBS 3/3